ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:297.51KB ,
资源ID:2462477      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2462477.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(二元一次方程组特殊解法.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二元一次方程组特殊解法.doc

1、黄冈教育张家界教育中心 内部使用二元一次方程组的特殊解法1.二元一次方程组的常规解法,是代入消元法和加减消元法。这两种方法都是从“消元”这个基本思想出发,先把“二元”转化为“一元”把解二元一次方程组的问题归结为解一元一次方程,在“消元”法中,包含了“未知”转化到“已知”的重要数学化归思想。解二元一次方程的一般方法在此就不举例说明了。2、灵活消元(1)整体代入法5. 解方程组解:原方程组可变形为继续变形为代入得: 解得: 方程组的解为(2)先消常数法例6. 解方程组解:5得: 代入得: 把代入得:所以原方程组的解为(3)设参代入法例7. 解方程组解:由得: 设,则 把代入得: 解得: 把代入,得

2、: 所以原方程组的解是(4)换元法例8. 解方程组解:设,则原方程组可变形为 ,解得 所以 解这个方程组,得: 所以原方程组的解是(5)简化系数法例9. 解方程组解:得: 所以 得:由、得:解三元一次方程组的消元技巧解三元一次方程组的基本思想和解二元一次方程组一样也是消元,化三元为二元、一元,最终求出各未知数的值,完成解题过程.但是,在具体解题过程中,许多同学却难以下手,不清楚先消去哪个未知数好.下面就介绍几种常见的消元策略,供同学们学习时参考.一、当方程组中含某个未知数的项系数成整数倍关系时,可先消去这个未知数例1解方程组分析:方程组中含的项系数依次是4,2,6,且4=2(2),6=23.由

3、此可先消去未知数.解:+2,得,3-,得, 解由、组成的方程组,得,把代入,得,所以原方程组的解是.二、当某个方程组中缺含某未知数的项时,可以从其余方程中消去所缺少的未知数.例2解方程组分析:因为方程中缺少未知数项,故而可由、先消去,再求解.解:3+,得, 解由、组成的方程组,得, 把代入,得, 所以原方程组的解为.三、当有两个方程缺少含某未知数的项时,可先用含公共未知数的代数式表示另外两个未知数,再用代入法消元.例3解方程组分析:很明显,在方程、中,分别缺少未知数、的项,而都含有未知数的项,从而可用含的代数式分别表示、,再代入就可以直接消去、了.解:由,得, 把、代入,得, 把代入,得, 把

4、代入,得,所以原方程组的解是.四、对于一些结构特殊的三元一次方程组,可采用一些特殊的方法消元1整体代入法即将原方程组中的一个方程(或经过变形整理后的方程)整体代入其它方程中,从而达到消元求解的目的.例4解方程组分析:注意到中的,这就与有了联系,因此,可化为,把整体代入该方程中,可求出的值,从而易得与的值.解:由,得, 把整体代入,得,把代入、,得. 解,得.所以原方程组的解是.2整体加减法例5解方程组分析:方程组中每个未知数均出现了三次,且含各未知数的项系数和均为1,故可采用整体相加的方法.解:+,得, 再由分别减去、各式,分别得, ,.所以原方程组的解是.3整体改造例6解方程组分析:按常规方法逐步消元,非常繁杂.考察系数关系:中含、项的系数是中对应系数的4倍;中含、项的系数是中对应系数的27倍.因此可对、进行整体改造后,综合加减法和代入法求解.解:由、,得再将代入、,得,.把、的值代入,得.所以原方程组的解为.4参数法例7解方程组分析:由于,所以可设,则得,. 代入可得,代入易求、.解:设,则得,. 代入,得,代入,得.评注:这里的被称为辅助未知数(或参数).由于它的中介作用,避免了原方程组中三个未知数、的直接变换消元,从而大大减少了运算量.6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服