1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每题4分,共48分)1我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是( )A6(1+x)8.5 B6(1+2x)8.5C6(1+x)28.5 D6+6(1+x)+6(1+x)28.52从 1 到 9这9个自然数中任取一个,是偶数的概率是()ABCD3如图,一段抛物线y=x2+4(2x2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2
3、(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A6t8B6t8C10t12D10t124两个相似多边形的面积比是916,其中小多边形的周长为36 cm,则较大多边形的周长为)A48 cmB54 cmC56 cmD64 cm5若关于的方程的解为,则方程的解为( )ABCD6如图,在中,半径垂直弦于,点在上,则半径等于()ABCD7现实世界中对称现象无处不在,汉字中也有些具有对称性,下列美术字是轴对称图形的是()A处B国C敬D王8下列说法正确的是( )A经过三点可以做一个圆B平分弦的直径垂直于这条弦C等弧所对的圆心角相
4、等D三角形的外心到三边的距离相等9以原点为中心,把点逆时针旋转,得点,则点坐标是( )ABCD10把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为( )ABCD11在下列图形中,不是中心对称图形的是( )ABCD12下列不是中心对称图形的是( )ABCD二、填空题(每题4分,共24分)13有一块长方形的土地,宽为120m,建筑商把它分成甲、乙、丙三部分,甲和乙均为正方形,现计划甲建住宅区,乙建商场,丙地开辟成面积为3200m2的公园若设这块长方形的土地长为xm那么根据题意列出的方程是_(将答案写成ax2+bx+c=0(a0)的形式)14如图,四边形ABCD内接于O,连结AC,
5、若BAC35,ACB40,则ADC_15已知反比例函数的图象经过点P(a1,4),则a _16如图,在扇形AOB中,AOB=90,点C为OA的中点,CEOA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为 .17一张等腰三角形纸片,底边长为15,底边上的高为22.5,现沿底边依次从下往上裁剪宽度均为3的矩形纸条,如图,已知剪得的纸条中有一张是正方形(正方形),则这张正方形纸条是第_张. 18如图,铁道口的栏杆短臂长1m,长臂长16m当短臂端点下降0.5m时,长臂端点升高_三、解答题(共78分)19(8分)初三(1)班要从2男2女共4名同学中选人做晨会的升旗手
6、(1)若从这4人中随机选1人,则所选的同学性别为男生的概率是 (2)若从这4人中随机选2人,求这2名同学性别相同的概率20(8分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A唐诗;B宋词;C论语;D三字经比赛形式为 “双人组”小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明21(8分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长
7、交轴于点,点刚好是的中点.已知的坐标为(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_.22(10分)有两个不透明的袋子,甲袋子里装有标有两个数字的张卡片,乙袋子里装有标有三个数字的张卡片,两个袋子里的卡片除标有的数字不同外,其大小质地完全相同(1)从乙袋里任意抽出一张卡片,抽到标有数字的概率为 (2)求从甲、乙两个袋子里各抽一张卡片,抽到标有两个数字的卡片的概率23(10分)在RtABC中,BCA90,AABC,D是AC边上一点,且DADB,O是AB的中点,CE是BCD的中线(1)如图a,连接OC,请直接写出OC
8、E和OAC的数量关系: ;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使MONADB,ON与射线CA交于点N如图b,猜想并证明线段OM和线段ON之间的数量关系;若BAC30,BCm,当AON15时,请直接写出线段ME的长度(用含m的代数式表示)24(10分)如图,矩形ABCD中,ACB=30,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F(1)当PEAB,PFBC时,如图1,则的值为 ;(2)现将三角板绕点P逆时针旋转(060)角,如图2,求的值;(3)
9、在(2)的基础上继续旋转,当6090,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论25(12分)如图,在ABC中,AB=AC,点D在BC上,BD=DC,过点D作DEAC,垂足为E,O经过A,B,D三点(1)求证:AB是O的直径;(2)判断DE与O的位置关系,并加以证明;(3)若O的半径为3,BAC=60,求DE的长26如图,是一个锐角三角形,分别以、向外作等边三角形、,连接、交于点,连接.(1)求证:(2)求证:参考答案一、选择题(每题4分,共48分)1、C【解析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【详解】解:由
10、题意可得6(1+x)2=8.5,故选择C.【点睛】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.2、B【解析】在1到9这9个自然数中,偶数共有4个,从这9个自然数中任取一个,是偶数的概率为:.故选B.3、D【解析】首先证明x1+x2=8,由2x34,推出10x1+x2+x312即可解决问题.【详解】翻折后的抛物线的解析式为y=(x4)24=x28x+12,设x1,x2,x3均为正数,点P1(x1,y1),P2(x2,y2)在第四象限,根据对称性可知:x1+x2=8,2x34,10x1+x2+x312,即10t12,故选D【点睛】本题考查二次函数与x轴的交点,二次函数的性质,抛
11、物线的旋转等知识,熟练掌握和灵活应用二次函数的相关性质以及旋转的性质是解题的关键.4、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2大多边形的周长为2cm故选A考点:相似多边形的性质5、C【分析】设方程中,根据已知方程的解,即可求出关于t的方程的解,然后根据即可求出结论【详解】解:设方程中,则方程变为关于的方程的解为,关于的方程的解为,对于方程,或3解得:,故选C【点睛】
12、此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键6、B【分析】直接利用垂径定理进而结合圆周角定理得出是等腰直角三角形,进而得出答案【详解】半径弦于点,是等腰直角三角形,则半径故选:B【点睛】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出是等腰直角三角形是解题关键7、D【分析】利用轴对称图形定义判断即可【详解】解:四个汉字中,可以看作轴对称图形的是:王,故选:D【点睛】本题考查轴对称图形的定义,轴对称图形是指沿着某条直线对称后能完全重合的图形,熟练掌握轴对称图形的概念是解决本题的关键8、C【解析】根据确定圆的条件、垂径定理的推论、圆心角、弧、弦的关系、三角形的外心的
13、知识进行判断即可【详解】解:A、经过不在同一直线上的三点可以作一个圆,A错误;B、平分弦(不是直径)的直径垂直于这条弦,B错误;C、等弧所对的圆心角相等,C正确;D、三角形的外心到各顶点的距离相等,D错误;故选:C【点睛】本题考查的是圆心角、弧、弦的关系、确定圆的条件、垂径定理的推论和三角形外心的知识,掌握相关定理并灵活运用是解题的关键9、B【分析】画出图形,利用图象法即可解决问题【详解】观察图象可知B(-5,4),故选B【点睛】本题考查坐标与图形变化-旋转,解题的关键是理解题意,灵活运用所学知识解决问题10、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:把抛物线向左
14、平移1个单位,再向下平移2个单位,所得抛物线的解析式为:.故选:C.【点睛】此题考查了抛物线的平移,属于基本题型,熟知抛物线的平移规律是解答的关键.11、C【解析】根据中心对称图形的概念,对各选项分析判断即可得解【详解】解:A、是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项符合题意;D、是中心对称图形,故本选项不符合题意故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合12、A【分析】根据中心对称图形的定义,逐一判断选项,即可【详解】A是轴对称图形,不是中心对称图形,A符合题意,B是
15、中心对称图形,B不符合题意,C是中心对称图形,C不符合题意,D是中心对称图形,D不符合题意,故选A【点睛】本题主要考查中心对称图形的定义,掌握中心对称图形的定义是解题的关键二、填空题(每题4分,共24分)13、x2361x+32111=1【分析】根据叙述可以得到:甲是边长是121米的正方形,乙是边长是(x121)米的正方形,丙的长是(x121)米,宽是121(x121)米,根据丙地面积为3211m2即可列出方程【详解】根据题意,得(x121)121(x121)=3211,即x2361x+32111=1故答案为x2361x+32111=1【点睛】本题考查了由实际问题抽象出一元二次方程,理解题意找
16、到合适的等量关系是解题的关键14、1【解析】根据三角形内角和定理求出,根据圆内接四边形的性质计算,得到答案【详解】,四边形ABCD内接于,故答案为1【点睛】本题考查的是圆内接四边形的性质、三角形内角和定理,掌握圆内接四边形的对角互补是解题的关键15、3【分析】直接将点P(a1,4)代入求出a即可.【详解】直接将点P(a1,4)代入,则,解得a=3.【点睛】本题主要考查反比例函数图象上点的坐标特征,熟练掌握反比例函数知识和计算准确性是解决本题的关键,难度较小.16、.【解析】试题解析:连接OE、AE,点C为OA的中点,CEO=30,EOC=60,AEO为等边三角形,S扇形AOE= S阴影=S扇形
17、AOB-S扇形COD-(S扇形AOE-SCOE)= = =17、6【分析】设第x张为正方形纸条,由已知可知,根据相似三角形的性质有 ,从而可计算出x的值.【详解】如图,设第x张为正方形纸条,则 即解得 故答案为6【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.18、8m【分析】由题意证ABOCDO,可得,即,解之可得【详解】如图,由题意知BAO=C=90,AOB=COD,ABOCDO,即,解得:CD=8,故答案为:8m【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键三、解答题(共78分)19、(1);(2)P(这2名同学性别相同) =【分
18、析】(1)用男生人数2除以总人数4即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1);(2)从4人中随机选2人,所有可能出现的结果有:(男1,男2)、(男1,女1)、(男1,女2)、(男2,男1)、(男2,女1)、(男2,女2)、(女1,男1)、(女1,男2)、(女1,女2)、(女2,男1)、(女2,男2)、(女2,女1),共有12种,它们出现的可能性相同,满足“这2名同学性别相同”(记为事件A)的结果有4种,所以P(A)= 20、【分析】画出树状图,然后根据概率公式列式计算,即可得到答案.【详解】解:画树状图为: 共有12种等可能的结果数
19、; 其中恰好小明抽中“唐诗”且小红抽中“宋词”的结果数为1, 恰好小明抽中“唐诗”且小红抽中“宋词”的概率=;【点睛】本题考查了列表法和树状图法,以及概率的公式,解题的关键是熟练掌握列表法和树状图法求概率.21、(1);(2),(,0)【分析】(1)证得BD是CF的垂直平分线,求得,作DGBF于G,求得点D的坐标为 ,从而求得反比例函数的解析式;(2)分3种情形,分别画出图形即可解决问题【详解】(1) 四边形ABOC是矩形,AB=OC,AC=OB,根据对折的性质知,AB=DB,又D是CF的中点,BD是CF的垂直平分线,BC=BF, ,点B的坐标为 ,在中,过D作DGBF于G,如图,在中,点D的
20、坐标为 ,代入反比例函数的解析式得:, 反比例函数的解析式;(2) 如图、中,作EQx轴交反比例函数的图象于点Q,在中, ,点E的坐标为 ,点Q纵坐标与点E纵坐标都是,代入反比例函数的解析式得:,解得:,点Q的坐标为 ,四点构成平行四边形,点的坐标分别为 , ;如图中,构成平行四边形,作QMy轴交轴于点M,四边形为平行四边形, ,点的坐标为 ,点的坐标为 ,综上,符合条件点的坐标有: , ,;【点睛】本题考查反比例函数综合题、矩形的性质、翻折变换、直角三角形中30度角的性质、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想
21、思考问题22、(1);(2)抽到标有两个数字的卡片的概率是【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数和抽到标有3、6两个数字的卡片的情况数,然后根据概率公式即可得出答案【详解】(1)乙袋子里装有标有三个数字的卡片共3张,则抽到标有数字的概率为;故答案为:;(2)根据题意画图如下:共有种等情况数,其中抽到标有两个数字有种,则抽到标有两个数字的卡片的概率是【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率
22、=所求情况数与总情况数之比23、(1)ECOOAC;(2)OMON,理由见解析,EM的值为m+m或mm【分析】(1)结论:ECOOAC理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可(2)只要证明COMAON(ASA),即可解决问题分两种情形:如图31中,当点N在CA的延长线上时,如图32中,当点N在线段AC上时,作OHAC于H分别求解即可解决问题【详解】解:(1)结论:ECOOAC理由:如图1中,连接OEBCD90,BEED,BOOA,CEEDEBBD,COOAOB,OCAA,BEED,BOOA,OEAD,OEAD,CEEOEOCOCAECO,ECOOAC故答案为:OCEOAC(2
23、)如图2中,OCOA,DADB,AOCAABD,COAADB,MONADB,AOCMON,COMAON,ECOOAC,MCONAO,OCOA,COMAON(ASA),OMON如图31中,当点N在CA的延长线上时,CAB30OAN+ANO,AON15,AONANO15,OAANm,OCMOAN,CMANm,在RtBCD中,BCm,CDB60,BDm,BEED,CEBDm,EMCM+CEm+m如图32中,当点N在线段AC上时,作OHAC于HAON15,CAB30,ONH15+3045,OHHNm,AHm,CMANmm,ECm,EMECCMm(mm)mm,综上所述,满足条件的EM的值为m+m或mm【
24、点睛】本题属于几何变换综合题,考查了直角三角形斜边中线定理、三角形中位线定理、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题24、(1);(2);(3)变化.证明见解析.【分析】(1)证明APEPCF,得PE=CF;在RtPCF中,解直角三角形求得的值即可;(2)如答图1所示,作辅助线,构造直角三角形,证明PMEPNF,并利用(1)的结论,求得的值;(3)如答图2所示,作辅助线,构造直角三角形,首先证明APMPCN,求得;然后证明PMEPNF,从而由求得的值.与(1)(2)问相比较,的值发生了变化.【详解】(1)矩形ABCD,ABBC,PA=PC.PEAB
25、,BCAB,PEBC.APE=PCF.PFBC,ABBC,PFAB.PAE=CPF.在APE与PCF中,PAE=CPF,PA=PC,APE=PCF,APEPCF(ASA).PE=CF.在RtPCF中,;(2)如答图1,过点P作PMAB于点M,PNBC于点N,则PMPN.PMPN,PEPF,EPM=FPN.又PME=PNF=90,PMEPNF.由(1)知,.(3)变化.证明如下:如答图2,过点P作PMAB于点M,PNBC于点N,则PMPN,PMBC,PNAB.PMBC,PNAB,APM=PCN,PAM=CPN.APMPCN.,得CN=2PM.在RtPCN中,.PMPN,PEPF,EPM=FPN.
26、又PME=PNF=90,PMEPNF.的值发生变化.25、(1)证明见解析;(2)DE与O相切;(3)【分析】(1)连接AD,根据等腰三角形三线合一性质得到ADBC,再根据90的圆周角所对的弦为直径即可证得AB是O的直径;(2)DE与圆O相切,理由为:连接OD,利用中位线定理得到ODAC,利用两直线平行内错角相等得到ODE为直角,再由OD为半径,即可得证;(3)由AB=AC,且BAC=60,得到DABC为等边三角形,连接BF,DE为DCBF中位线,求出BF的长,即可确定出DE的长【详解】解:(1)证明:连接AD,AB=AC,BD=DC,ADBC,ADB=90,AB为O的直径;(2)DE与O相切
27、,理由为:连接OD,O、D分别为AB、BC的中点,OD为ABC的中位线,ODBC,DEBC,DEOD,OD为O的半径,DE与O相切;(3)解:连接BF,AB=AC,BAC=60,ABC为等边三角形,AB=AC=BC=6,AB为O的直径,AFB=DEC=90,AF=CF=3,DEBF,D为BC中点,E为CF中点,DE=BF,在RtABF中,AFB=90,AB=6,AF=3,BF=,则DE=BF=【点睛】本题考查圆;等腰三角形;平行线的性质26、(1)见解析;(2)见解析【分析】(1)过A作AMCD于M,ANBE于N,设AB与CD相交于点G根据等边三角形的性质得到AD=AB,AC=AE,BAD=C
28、AE=60,根据全等三角形的判定定理即可得ACDAEB,根据全等三角形的性质可得AM=AN,根据角平分线的判定定理即可得到DFA=AFE,再根据全等三角形的对应角相等和三角形内角和等于180得到DFB=DAG=60,即可得到结论;(2)如图,延长FB至K,使FK=DF,连DK,根据等边三角形的性质和全等三角形的判定和性质定理即可得到结论【详解】(1)过A作AMCD于M,ANBE于N,设AB与CD相交于点GABD和ACE为等边三角形,AD=AB,AC=AE,BAD=CAE=60,DAC=BAE=60+BAC在ACD和AEB中,ACDAEB,CD=BE,ADG=ABF,ADC的面积=ABE的面积,
29、CDAM=BEAN,AM=AN,AF是DFE的平分线,DFA=AFEADG=ABF,AGD=BGF,DFB=DAG=60,GFE=120,BFD=DFA=AFE(2)如图,延长FB至K,使FK=DF,连接DKDFB=60,DFK为等边三角形,DK=DF,KDF=K=60,K=DFA=60ADB=60,KDB=FDA在DBK和DAF中,K=DFA,DK=DF,KDB=FDA,DBKDAF,BK=AFDF=DK=FK=BK+BF,DF=AF+BF,又CD=DF+CF,CD=AF+BF+CF【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定与性质,角平分线的判定,正确的作出辅助线是解题的关键
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100