1、(完整版)二次函数与三角形面积的综合二次函数与三角形面积的综合寻找类1、 重点:中考压轴题的重点在于寻找分析问题,解决问题的思路和方法.能应对这部分题的关键需要熟练几部分知识点:(1)二次函数与一次函数,反比例函数的解析式(2)勾股定理(3)四边形(4)相似三角形和三角形全等(5)锐角三角函数(6)轴对称和中心对称(7)求交点的方法(8)知识的综合运用2、 难点:寻找联系是这部分内容的一个关键所在,也是一个难点。尤其是遇到二次函数与三角形面积的综合题的解题思路。运用面积求坐标等等的合理运用,以及运用的重要因素在哪里?3、 易错点:面积中涉及求面积的方法,坐标漏找或错找,坐标与线段长度之间的联系
2、,坐标在不在二次函数的图像上。这些都是在考试中容易失分的地方。4、 切入点:例如:根据已有条件求坐标,首先要想到平面直角坐标系与锐角三角函数的联系,尤其是正切的运用。这样直观的可以求出坐标(前提必须建立直角三角形),如果不是直角三角形可以想法构建直角三角形,这是求坐标的最好方法,此方法不通的情况下可以运用勾股定理进行求解,很少运用相似求。掌握了求解方法再做题的时候就知道如何下手了。而次部分求面积的时候要先找到点的坐标的具体位置以及如何通过面积求坐标。5。求面积常用的方法a.直接法 b。简单的组合 c。面积不变同底等高或等底等高的转换 d.相似 e.三角函数 f。找面积的最大最小值利用二次函数的
3、性质 (1)直接法 若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的的高,那么三角形的面积能直接用公式算出来。此题中的三角形的面积就能直接求出。(2)通过简单的重新组合就能求出面积。第6题(2009年贵州安顺市)27、(本题满分12分)如图,已知抛物线与交于A(1,0)、E(3,0)两点,与轴交于点B(0,3)。(1) 求抛物线的解析式;(2) 设抛物线顶点为D,求四边形AEDB的面积;(3) AOB与DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。 第8题(2009年四川南充市)21如图9,已知正比例函数和反比例函数的图象都经过点(1)求正比例函数和反比例函数的
4、解析式;(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;yxOCDBA336(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由例2 (2006,重庆市)已知:m,n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图像经过点A(m,0),B(0,n),如图所示 (1)求这个抛物线的解析式; (2)设(1)中的抛物线与x轴的另一交点为C,抛物线的
5、顶点为D,试求出点C,D的坐标和BCD的面积;(3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标(4)相似第10题(2009年台州市)24如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为(1)请直接写出点的坐标; (2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(第24题)(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛
6、物线弧所扫过的面积25已知抛物线经过点 A (0, 4)、B(1, 4)、C (3, 2),与x轴正半轴交于点D。 (1)求此抛物线的解析式及点D的坐标; (2)在x轴上求一点E, 使得BCE是以BC为底边的等腰三角形; (3)在(2)的条件下,过线段ED上动点P作直线PF/BC, 与BE、CE分别交于点F、G,将EFG沿FG翻折得到EFG. 设P(x, 0), EFG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围。09山东)如图,抛物线经过三点(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相
7、似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;OxyABC41(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标(例题分析)(09朝阳一模)24。 (本小题7分)抛物线与x轴交于A(1,0)、B两点,与y轴交于点C(0,3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,求出点D的坐标;(3)抛物线对称轴上是否存在一点P,使得SPAM=3SACM,若存在,求出P点坐标;若不存在,请说明理由。解析:此题考察的是二次函数与三角形面积的综合,在中考题中考察学生
8、的分析能力和综合运用知识的能力。(1) 第一问二次函数的求解方法需要注意透彻理解解析式的三种求解方法:一般式,顶点式,双根式,前两种方法是最常用的方法。已知条件中点A、C在抛物线上.所以还需要再寻找一个条件才能求出解析式。所以点Q到x轴的距离为6这句话就非常关键,通过这句话再根据图形得到抛物线的对称轴,利用顶点式求其解析式。(2) 看到垂直第一时间想到锐角三角函数中的正切,利用正切求坐标是最简便易行的方法,平面直角坐标系涉及的是垂直,因此坐标轴上的点的坐标比较好求.求点D的坐标要优先想到点D的位置在哪?抛物线上的点通常采用二次函数与一次函数联立方程组求点的坐标。这样分析起来就不难解决此题了。(
9、3) SPAM=3SACM,求出P点坐标。首先就要先观察点P的位置在哪里,然后想法把点的坐标设出来然后再利用面积之间的关系求坐标.通常情况下面积的表示方法都要通过三角形之间,四边形之间的转换表示面积。时刻要想到与坐标轴垂直的边或与坐标轴平行的边当底或高,然后再进行求解。备注:本题的可读指数是,做起来还是非常容易寻找突破口的,同学们要加油!第1题(09朝阳一模)24。 (本小题7分)抛物线与x轴交于A(1,0)、B两点,与y轴交于点C(0,3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,
10、求出点D的坐标;(3)抛物线对称轴上是否存在一点P,使得SPAM=3SACM,若存在,求出P点坐标;若不存在,请说明理由。第2题(09海淀一模)25已知抛物线经过点 A (0, 4)、B(1, 4)、C (3, 2),与x轴正半轴交于点D。 (1)求此抛物线的解析式及点D的坐标; (2)在x轴上求一点E, 使得BCE是以BC为底边的等腰三角形; (3)在(2)的条件下,过线段ED上动点P作直线PF/BC, 与BE、CE分别交于点F、G,将EFG沿FG翻折得到EFG。 设P(x, 0), EFG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围。第3题.(09黄石)正方
11、形在如图所示的平面直角坐标系中,在轴正半轴上,在轴的负半轴上,交轴正半轴于交轴负半轴于,,抛物线过三点(1)求抛物线的解析式;(3分)(2)是抛物线上间的一点,过点作平行于轴的直线交边于,交所在直线于,若,则判断四边形的形状;(3)在射线上是否存在动点,在射线上是否存在动点,使得且,若存在,请给予严格证明,若不存在,请说明理由第7题(2009年山东临沂市)26(本小题满分13分)如图,抛物线经过三点(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC
12、上方的抛物线上有一点D,使得的面积最大,求出点D的坐标OxyABC41(第26题图)第9题(2009年四川凉山州)26如图,已知抛物线经过,两点,顶点为(1)求抛物线的解析式;(2)将绕点顺时针旋转90后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;yxBAOD(第26题)(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标第10题(2009年台州市)24如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为(1)请直接写出点的坐标; (2)求抛物线的解析式;(3)若正方形
13、以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(第24题)(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积备用图第11题(2009年四川南充市)21如图9,已知正比例函数和反比例函数的图象都经过点(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由yxOCDBA336第14题第18题单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善 教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能.教育革命的对策是手脑联盟,结果是手与脑的力量都可以大到不可思议。.
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100