ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:2.52MB ,
资源ID:2438088      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2438088.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(Matlab图形绘制经典案例.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

Matlab图形绘制经典案例.doc

1、MATLAB绘图案例 1、 三维曲线 >> t=0:pi/50:10*pi; >> plot3(sin(2*t),cos(2*t),t) >> axis square >> grid on 2、一窗口多图形 >> t=-2*pi:0.01:2*pi; >> subplot(3,2,1) >> plot(t,sin(t)) >> subplot(3,2,2) >> plot(t,cos(t)) >> subplot(3,2,3) >> plot(t,tan(t)) >> axis([-pi pi -100 100

2、]) >> subplot(3,2,4) >> plot(t,cot(t)) >> axis([-pi pi -100 100]) >> subplot(3,2,5) >> plot(t,atan(t)) >> subplot(3,2,6) >> plot(t,acot(t)) 3、 图形样式、标注、题字 (也可以利用菜单直接Insert) >> x=0:pi/20:2*pi; >> plot(x,sin(x),'b-.') >> hold on >> plot(x,cos(x),'r--') >> hold on >> plot(x,sin(x)

3、1,'g:') >> hold on >> plot(x,cos(x)-1) >> xlabel('x'); >> xlabel('x轴'); >> ylabel('y轴'); >> title('图形样式、标注等'); >> text(pi,sin(pi),'x=\pi'); >> legend('sin(x)','cos(x)','sin(x)-1','cos(x)-1'); >> [x1,y1]=ginput(1) %利用鼠标定位查找线上某点的值 x1 = 2.0893 y1 = -0.5000 >> gtext('x=2.5') %鼠标定位放

4、置所需的值在线上 4、 >> fplot('[sin(x),cos(x),sqrt(x)-1]',[0 2*pi]) M文件:myfun.m 内容如下: function y=myfun(x) y(:,1)=sin(x); y(:,2)=cos(x); y(:,3)=x^(1/2)-1; 再运行:>> fplot('myfun',[0 2*pi]) 同样可以得到右图 5、 >> [x,y]=fplot('sin',[0 2*pi]); >> [x1,y1]=fplot('cos',[0 2*pi]); >> plot(x

5、y,'-r',x1,y1,'-.k') >> legend('y=sinx','y=cosx') 6、 >> x=[-2:0.2:2]; >> y=exp(x)-sin(x); >> plot(x,y,'-or','linewidth',2) 7、画出y1=6(sinx-cosx),y2=x2^x-1的图形 >> x=[-3:0.1:3]; >> y1=6*(sin(x)-cos(x)); >> y2=x.*2.^x-1; >> plot(x,y1,'-r',x,y2,'-.k','linewidth',2) 8、绘制心形图r=2

6、1-cos)的极坐标图形 >> theta=[0:0.01:2*pi]; >> polar(theta,2*(1-cos(theta)),'-k') >> polar(theta,2*(1-cos(theta)),'-or') 9、用双轴对数坐标绘制y=x*3^x-30的图形 >> x=logspace(-3,3); >> y=x.*3.^x-30; >> loglog(y,'-or','linewidth',2); >> grid on 10、绘制数据向量的单轴对数坐标图形 >> x=[1:50]; >> y=[1:50]; >> semilogx(

7、x,y,'-*b') %绘制横轴为对数坐标 %纵轴为线性坐标 >> grid on >> semilogy(x,y,'-*b') %绘制纵轴为对数坐标 %横轴为线性坐标 >> grid on 11、绘制矩阵A=123456789的条形图, 并求出句柄属性值向量。 >> A=[1 2 3;4 5 6;7 8 9]; >> h=bar(A) h = 171.0031 174.0026 176.0026 12、绘制矩阵的水平条形图。 >> y=[3 2 -2 2 1;-1 2 3 7 1;7 2 -3 5 2]; >> x=[1:3];

8、 >> barh(x,y) 13、绘制矩阵的面积图。 >> y=[3 2 -2 2 1;-1 3 3 7 2;-7 5 5 9 3]; >> area(y) 14、绘制矩阵的二维饼图 >> x=[1 2 3;4 5 6;7 8 9]; >> explode=[0 1 0 1 0 1 0 1 0]; >> pie(x,explode) 15、自行确定数据向量,绘制其散点图。 >> x=rand(1,100);y=randn(1,100);scatter(x,y,20) 16、自行确定数据,绘制其柱形图。 >> x=[-2:0.01:4]; >>y

9、randn(1131,1); >>hist(y,x) 17、绘制y=sinx在[0,2*pi] 上的误差图。 >> x=[0:pi/20:2*pi]; >> y=sin(x); >> E=std(y)*ones(size(x)); %条形控制 >> errorbar(x,y,E) 18、绘制火柴杆图。 >> x=[1 1.5 2;3 3.5 4;5 5.5 6]; >> y=[4 3 2;4 8 9;2 7 3]; >> stem(x,y,'fill') %fill意思是“实心点” 19、绘制羽列图。 >> U=[-90:5:90]*pi/1

10、80; %建立等间距数据 >> V=2*ones(size(U)); %根据U建立数据 >> [U,V]=pol2cart(U,V); 转换数据为直角坐标形式 >> feather(U,V) 20、同一窗口绘制y=50e-x20sinx 和y=12e-x2cos⁡x在[0,30]上的图形。 >> x=[0:0.01:30]; >> y1=50*exp(-0.05*x).*sin(x); >> y2=0.5*exp(-0.5*x).*cos(x); >> plotyy(x,y1,x,y2,'plot') % plotyy(x,y1,x,y2,'plot')表示:

11、 用左侧y标度绘制(x,y1) 用右侧y标度绘制(x,y2) 21、绘制8阶魔方矩阵的等值线图和阶梯图。 >> A=magic(8);contour(A) %绘制等值线图stairs(A) %绘制阶梯图 23、绘制罗盘图。 >> x=rand(20,1);y=randn(20,1); >> compass(x,y) 22、绘制玫瑰花图。 >> theta=rand(1,200)*2*pi; >> rose(theta,25) 24、绘制函数z=3xye-x2-y2-1的梯度场矢量图。 >

12、> [x,y]=meshgrid([-2:0.1:2]); %建立栅格点数据向量 >> z=3.*x.*y*exp(-x.^2-y.^2)-1; %计算函数值向量 >> [u,v]=gradient(z,0.2,0.2); %计算梯度值向量 >> quiver(x,y,u,v,2) %绘制梯度场矢量图 26、生成一个5阶高斯分布矩阵,并给出相应的x,y向量矩阵。 >> [X,Y,Z]=peaks(5) X = -3.0000 -1.5000 0 1.5000 3.0000 -3.0000 -1.5000 0

13、 1.5000 3.0000 -3.0000 -1.5000 0 1.5000 3.0000 -3.0000 -1.5000 0 1.5000 3.0000 -3.0000 -1.5000 0 1.5000 3.0000 Y = -3.0000 -3.0000 -3.0000 -3.0000 -3.0000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 0

14、 0 0 0 0 1.5000 1.5000 1.5000 1.5000 1.5000 3.0000 3.0000 3.0000 3.0000 3.0000 Z = 0.0001 0.0042 -0.2450 -0.0298 -0.0000 -0.0005 0.3265 -5.6803 -0.4405 0.0036 -0.0365 -2.7736 0.9810 3.2695

15、0.0331 -0.0031 0.4784 7.9966 1.1853 0.0044 0.0000 0.0312 0.2999 0.0320 0.0000 25、给定向量x,y生成网格矩阵。 >> x=[1 2 3 4]; >> y=[10 11 12 13 14]; >> [U,V]=meshgrid(x,y) 18 U = 1 2 3 4 1 2 3 4 1 2 3 4 1

16、 2 3 4 1 2 3 4 V = 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 27、在-4<=x<=4,-4<=y<=4区域上 绘制z=x^2+y^2的三维网格图。 >> [x,y]=meshgrid(-4:0.125:4); >> z=x.^2+y.^2; >> meshc(x,y,z)

17、 28、绘制高斯分布函数的网格图。 >> [x,y]=meshgrid(-3:0.125:3); >> z=peaks(x,y); >> meshz(x,y,z) 29、用surf绘制高斯分布函数的曲面图。 >> [x,y]=meshgrid(-3:0.125:3); >>z=peaks(x,y); >>surf(x,y,z) 30、绘制曲线图。 >> t=[0:pi/200:10*pi]; >> x=2*cos(t); >> y=3*sin(t); >> z=t.^2; >> plot3(x,y,z) 31、利用peaks函数

18、产生的数据绘制其带形图。 >> [x,y]=meshgrid([-2*pi:pi/5:2*pi],[-2:1/5:2]); >> z=peaks(x,y); >> ribbon(y,z) 32、绘制三维饼图。 >> A=[1 2 3;4 5 6;7 8 9]; >> ex=[1 0 0;4 0 0;0 8 0]; >> pie3(A,ex) 33、在各种style参数的条件下绘制矩阵的三维条形图。 >> z=[1 2 3;4 5 6;7 8 9]; >>bar3(z,'detached') >>title('bar3函数以detached参数绘制A=[1 2 3;

19、4 5 6;7 8 9]的条形图') >> bar3(z,'grouped') >> title('bar3函数以grouped参数绘制A=[1 2 3;4 5 6;7 8 9]的条形图') >> bar3(z,'stacked') >> title('bar3函数以stacked参数绘制A=[1 2 3;4 5 6;7 8 9]的条形图') 34、绘制柱形图。 >> t=[0:pi/50:2*pi]; >> [x,y,z]=cylinder(t.*sin(t)); >> surf(x,y,z) >> cylinder(t.^2) >> title('cy

20、linder(t^2)绘制的柱形图') 36、绘制三维火柴杆图。 >> x=[1:0.5:20]; >> y=sqrt(x); >> z=sqrt(x.^2+y.^2); >> stem3(x,y,z,'filled') 35、绘制三维散点图。 >> x=rand(500,1); >> y=randn(500,1); >> z=randn(500,1); >> scatter3(x,y,z,'p','r') 37、绘制高斯分布函数的三维瀑布图。 >> [x,y]=meshgrid(-4:0.05:4

21、); >> z=peaks(x,y); >> waterfall(x,y,z) 38、绘制等值线图。 >> [x,y]=meshgrid(-3:0.1:3); >> z=2-x.^2-y.^2; >> contour3(z,20) 39、绘制一个球面。 >> [x,y,z]=sphere(40); >> surf(x,y,z) 40、绘制三角形网格图和三角形表面图。 >> [x,y]=meshgrid(-3:0.5:3); >> z=x.*exp(-x.^2-y.^2); >> tri=delaunay(x,y); %建立三角形网格 >> t

22、rimesh(tri,x,y,z) >> trisurf(tri,x,y,z) 41、绘制一个三维彗星图。 >> t=[-3*pi:pi/100:3*pi]; >> x=3.*cos(t); >> y=2.*sin(t); >> z=t.^2; >> comet3(x,y,z) 42、绘制曲面z的表面法向量向量图。 >> [x,y]=meshgrid([-3:0.2:3],[-2:0.5:2]); >> z=x.*exp(-x.^2-y.*2); >> [u,v,w]=surfnorm(x,y,z); %计算表面法向向量 >> quiver3(x,y,z,u,v

23、w,1.2) %绘制三维向量图 >> hold on >> surf(x,y,z) >> hold off 43、绘制空间立体z=xe-x2-y2-z2在-2<=x<=2, -2<=y<=2, -2<=z<=2上的切片图。 >> [x,y,z]=meshgrid(-2:0.2:2); >> v=x.*exp(-x.^2-y.^2-z.^2); >> xi=[-1.2 0.8 2];yi=2;zi=[-2 -0.2]; >> slice(x,y,z,v,xi,yi,zi) 44、在【-pi,pi】上制作一个不断绘制正弦曲线的动画。 >> x=[-pi:0.02:

24、pi]; >> y=sin(x); >> h=plot(x,y,'r-') h = 171.0011 >> axis([-4 4 -1 1]) >> axis square >> grid off >> set(h,'erasemode','xor','markersize',10) >> while 1 drawnow x=x+0.01; y=sin(x)-0.01; set(h,'xdata',x,'ydata',y) if(x>pi)|(y<-1) x=[-pi:0.02:pi]; y=sin(x); end end 45、创建一个三维曲

25、面z=x^2+y^2的动画。 >> x=[-2:0.2:2]; >> [x1,y1]=meshgrid(x); >> z=x1.^2+y1.^2+eps; >> surf(z); >> ta=axis; >> ft=moviein(40); >> for i=1:40 surf(sin(2*pi*i/20)*z,z) axis(ta) ft(:,i)=getframe; end >> movie(ft,20) 46、通过调整Z的数值来建立peaks函数的动画。 >> z=peaks; >> surf(z)

26、 >> axis tight >>set(gca,'nextplot', 'replacechildren'); >> for i=1:20 surf(sin(2*pi*i/20)*z,z) f(i)=getframe; end >> movie(f,30) 47、cool色图+faceted系统默认颜色阴影和默认色图jet+interp颜色阴影绘制peaks函数图。 >> z=peaks; >> surf(z) >> colormap(cool) >> shading faceted >> >> z=peaks; >> surf(z) >> colormap(jet) >> shading interp 48、创建一个三维表面图并设置不同的视点。 >> [x,y]=meshgrid([-3:0.2:3]); >> z=x.*exp(-x.^2-y.^2); >> surf(z) >> [ax,el]=view ax = -37.5000 el = 30 >> view(30,-30) 49、绘图工具栏介绍。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服