ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:120.50KB ,
资源ID:2403628      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2403628.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(运筹学指派问题.ppt)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

运筹学指派问题.ppt

1、第五第五节节 指派指派问题问题(Assignment Problem)1.标准指派问题的提法及模型 指派问题的标准形式是:有n个人和n件事,已知第i个人做第j件事的费用为cij(i,j=1,2,n),要求确定人和事之间的一一对应的指派方案,使完成这n件事的总费用最小。数学模型为:若指派第i个人做第j件事若不指派第i个人做第j件事(i,j=1,2,n)设n2个0-1变量1-其中矩阵C称为是效率矩阵或系数矩阵。其解的形式可用0-1矩阵的形式来描述,即(xij)nn。标准的指派问题是一类特殊的整数规划问题,又是特殊的0-1规划问题和特殊的运输问题。1955年W.W.Kuhn利用匈牙利数学家D.Kon

2、ig关于矩阵中独立零元素的定理,提出了解指派问题的一种算法,习惯上称之为匈牙利解法。2.匈牙利解法 匈牙利解法的关键是指派问题最优解的以下性质:若从指派若从指派问问题题的系数矩的系数矩阵阵C=(cij)的某行(或某列)各元素分)的某行(或某列)各元素分别别减去一个常减去一个常数数k,得到一个新的矩,得到一个新的矩阵阵C=(cij),则则以以C和和C为为系数矩系数矩阵阵的两个的两个指派指派问题问题有相同的最有相同的最优优解。解。(这种变化不影响约束方程组,而只是使目标函数值减少了常数k,所以,最优解并不改变。)对于指派问题,由于系数矩阵均非负,故若能在在系数矩阵中找到n个位于不同行和不同列的零元

3、素(独立的0元素),则对应的指派方案总费用为零,从而一定是最优的。作变换,其不变性是最优解2-匈牙利法匈牙利法的步骤如下:步1:变换系数矩阵。对系数矩阵中的每行元素分别减去该行的最小元素;再对系数矩阵中的每列元素分别减去该列中的最小元素。若某行或某列已有0元素,就不必再减了(不能出现负元素)。3-步2:在变换后的系数矩阵中确定独立0元素(试指派)。若独立0元素已有n个,则已得出最优解;若独立0元素的个数少于n个,转步3。确定独立0元素的方法:当n较小时,可用观察法、或试探法;当n较大时,可按下列顺序进行 从只有一个0元素的行(列)开始,给这个0元素加圈,记作,然后划去所在的列(行)的其它0元素

4、,记作。给只有一个0元素的列(行)的0加圈,记作,然后划去所在行的0元素,记作。反复进行,直到系数矩阵中的所有0元素都被圈去或划去为止。如遇到行或列中0元素都不只一个(存在0元素的闭回路),可任选其中一个0元素加圈,同时划去同行和同列中的其它0元素。被划圈的0元素即是独立的0元素。4-步3:作最少数目的直线,覆盖所有0元素(目的是确定系数矩阵的下一个变换),可按下述方法进行1)对没有的行打“”号;2)在已打“”号的行中,对 所在列打“”3)在已打“”号的列中,对所在的行打“”号;4)重复2)3),直到再也找不到可以打“”号的行或列为止;5)对没有打“”的行划一横线,对打“”的列划一纵线,这样就

5、得到覆盖所有0元素的最少直线数。5-步4:继续变换系数矩阵,目的是增加独立0元素的个数。方法是在未被直线覆盖的元素中找出一个最小元素,然后在打“”行各元素中都减去这一元素,而在打“”列的各元素都加上这一最小元素,以保持原来0元素不变(为了消除负元素)。得到新的系数矩阵,返回步2。以例说明匈牙利法的应用。例1:求解效率矩阵为如下的指派问题的最优指派方案。6-解:第一步:系数矩阵的变换(目的是得到某行或列均有0元素)第二步:确定独立0元素元素的个数m=4,而n=5,进行第三步。7-第三步:作最少的直线覆盖所有的0元素,目的是确定系数矩阵的下一个变换。第四步:对上述矩阵进行变换,目的是增加独立0元素

6、的个数。方法是在未被直线覆盖的元素中找出一个最小元素,然后在打“”行各元素中都减去这一元素,而在打“”列的各元素都加上这一最小元素,以保持原来0元素不变(消除负元素)。得到新的系数矩阵。(它的最优解和原问题相同,为什么?)8-由解矩阵可得指派方案和最优值为32。9-例2 某大型工程有五个工程项目,决定向社会公开招标,有五家建筑能力相当的建筑公司分别获得中标承建。已知建筑公司Ai(I=1,2,3,4,5)的报价cij(百万元)见表,问该部门应该怎样分配建造任务,才能使总的建造费用最小?10-11-解:第一步:系数矩阵的变换(目的是得到某行或列均有0元素)第二步:确定独立0元素,即加圈元素的个数m

7、=4,而n=5,进行第三步。12-第三步:作最少的直线覆盖所有的0元素,目的是确定系数矩阵的下一个变换。第四步:对上述矩阵进行变换,目的是增加独立0元素个数。方法是在未被直线覆盖的元素中找出一个最小元素,然后在打“”行各元素中都减去这一元素,而在打“”列的各元素都加上这一最小元素,以保持原来0元素不变(消除负元素)。得到新的系数矩阵。(它的最优解和原问题相同,为什么?因为仅在目标函数系数中进行操作)13-14-此矩阵中已有5个独立的0元素,故可得指派问题的最优指派方案为:也就是说,最优指派方案为:让A1承建B3,A2承建B2,A3承建B1,A4承建B4,A5承建B5。这样安排建造费用为最小,即

8、7+9+6+6+6=34(百万元)15-3.一般的指派问题 在实际应用中,常会遇到各种非标准形式的指派问题。通常的处理方法是先将它们转化为标准形式,然后用匈牙利解法求解。最大化指派问题 设最大化指派问题系数矩阵C中最大元素为m。令矩阵B=(bij)=(m-cij),则以B为系数矩阵的最小化指派问题和以C为系数矩阵的原最大化指派问题有相同的最优解。人数和事数不等的指派问题 若人少事多,则添上一些虚拟的“人”。这些虚拟的人作各事的费用系数可取0,理解为这些费用实际上不会发生。若人多事少,则添上一些虚拟的“事”。这些虚拟的事被各人做的费用系数同样也取0。一个人可做几件事的指派问题 若某个人可做几件事

9、,则可将该人看做相同的几个人来接受指派。这几个人作同一件事的费用系数当然都一样。某事一定不能由某人作的指派问题 若某事一定不能由某个人做,则可将相应的费用系数取做足够大的数M。16-例3:对于例2的指派问题,为了保证工程质量,经研究决定,舍弃建筑公司A4和A5,而让技术力量较强的建设公司A1,A2,A3参加招标承建,根据实际情况,可允许每家建设公司承建一项或二项工程。求使总费用最少的指派方案。解:由于每家建筑公司最多可以承建两项,因此可把每家建筑公司看成两家建筑公司,其系数矩阵为17-上面的系数矩阵有6行5列,为了使“人”和“事”的数目相同,引入一件虚拟的事B6,使之成为标准指派问题的系数矩阵:18-然后,用匈牙利解法求解。可得费用最省为4+7+9+8+7=35(百万元)19-

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服