1、DOI:10.11992/tis.202305019网络出版地址:https:/ 电气与自动化工程学院,江西 南昌 330013)摘 要:为应对边耦合相依网络中因少部分的连边失效引起的网络大面积的结构性破坏甚至崩溃,本文提出了一种基于共同边界连边的边耦合相依网络级联失效修复模型。将修复过程与网络级联失效过程动态结合,同时根据边耦合网络的特征提出了复合冗余度择优修复策略和一种改进的复合冗余度择优修复策略。分别在随机故障和蓄意攻击情况下对 ER-ER(Erds-Rnyi 随机网络)、SF-SF(scale-free 无标度网络)边耦合相依网络进行仿真,与随机修复策略及介数择优修复策略对比,寻找最优
2、修复策略。研究发现在不同结构的边耦合相依网络中的最优修复策略,随着网络连边初始存留比例及故障类型的不同而发生改变,并且能够在更大的连边初始攻击比例下修复网络至初始状态的修复策略,其所需要的迭代步数并不一定最少。关键词:边耦合相依网络;级联失效;修复模型;择优算法;随机故障;蓄意攻击;随机网络;无标度网络中图分类号:TP393 文献标志码:A 文章编号:16734785(2024)01023811中文引用格式:高彦丽,熊志豪,陈世明.边耦合相依网络动态修复策略研究 J.智能系统学报,2024,19(1):238248.英文引用格式:GAO Yanli,XIONG Zhihao,CHEN Shim
3、ing.Research on dynamic recovery strategies for edge-coupled interde-pendent networksJ.CAAI transactions on intelligent systems,2024,19(1):238248.Research on dynamic recovery strategies for edge-coupledinterdependent networksGAO Yanli,XIONG Zhihao,CHEN Shiming(College of Electrical and Automation En
4、gineering,East China Jiaotong University,Nanchang 330013,China)Abstract:To cope with the extensive structural damage or even collapse of the networks caused by a minor fraction ofedge failures in edge-coupled interdependent networks,this paper proposes a cascading failure repair model for edge-coupl
5、ed interdependent networks based on mutual boundary edges,dynamically integrating the repair process with thecascading failure process.And according to the features of edge-coupled network,a selective repair strategy based oncompound excessive degree(SRCED)and an improved SRCED(ISRCED)are introduced
6、.Simulation studies on Erds-Rnyi random network(ER-ER)and scale-free network(SF-SF)edge-coupled interdependent networks are conductedunder random failure and deliberate attacks.Comparative analysis with the randomly repair strategy(RR)and the select-ive repair strategy based on edge betweenness(SREB
7、)is performed to find the optimal repair strategy.The research re-veals that the optimal repair strategy in different structured edge-coupled interdependent networks changes depending onthe initial edge retention ratio and the type of failure.Moreover,the repair strategy,capable of restoring the net
8、work toits initial state at a higher initial attack ratio of edges,does not necessarily have the least number of iterations.Keywords:edge-coupled interdependent networks;cascading failure;recovery model;optimizing strategy;random fail-ure;deliberate attack;Erds-Rnyi random network;scale-free network
9、 现实世界中,各种基础设施网络(如能源、交通、通信等)甚至社会关系网络(如经济、舆论等)之间,相互依存、协同工作的情况非常之普遍。收稿日期:20230512.网络出版日期:20240108.基金项目:国家自然科学基金项目(61973118);江西省自然科学基金项目(20232BAB202033).通信作者:陈世明.E-mail:.第 19 卷第 1 期智能系统学报Vol.19 No.12024 年 1 月CAAI Transactions on Intelligent SystemsJan.2024智能系统学报编辑部版权所有这样的存有相互依赖关系的网络可以称之为相依网络,网络之间的相互依赖关系
10、,一方面提高了网络整体的运转效率,另一方面也增强了网络的脆弱性1。当某一网络产生故障,故障将通过网路间的相依关系传播到另一网络,同时,另一网络的故障也将传回,进一步加速整个相依网络的瘫痪2-4。这些基础设施网络或社会关系网络一旦发生故障瘫痪(如 2003 年意大利发生的因电力系统和通信网相继故障而导致的大停电5,2019年委内瑞拉国内电网半个月内经历次高强度攻击,导致超过 90%的州大停电6),势必会给社会经济活动和民生造成极其重要的影响。因此,如何提高相依网络鲁棒性,有效地应对和控制故障传播,避免相依网络发生结构性破碎,以及在相依网络发生结构性破碎后如何快速有效地进行网络修复,成为复杂网络研
11、究领域的重要问题7。根据复杂网络理论,在网络出现故障前实行防御措施,通过对节点进行重要性排序8-13,鉴定出关键节点进行预先保护,是一种避免网络发生结构性破碎的有效手段。如根据节点度数、介数8、佩奇排名值(Pagerank)9在相依网络中的相依边及相连边数10或依存强度11。然而,网络故障出现前的防御研究与故障的传播是互不干涉的一个静态过程。对于时刻处于变化中的真实网络,仅仅只是静态的防御并不足够,及时有效的修复措施是必要的。在单一网络中,Chi 等14提出了一种随机重连的鲁棒性增强修复策略。Hu 等15针对复杂网络中的 3 种攻击类型提出了 3 种分析策略,并分析了这些策略在不同攻击下的修复
12、效果。文献 16 提出了一种带有应急修复机理并引入节点过载故障概率的网络级联故障模型。Tang等17为研究复杂网络在遭遇随机故障或蓄意攻击时的鲁棒性,构建了故障节点概率传播模式下的级联失效模型,并设计了概率修复和阶段修复2 种故障节点修复策略,级联失效模型中节点故障概率随故障次数增加而逐渐降低。文献 18 提出一种基于系统弹性的结构评价方法,根据节点重要度评价,识别出系统关键节点,应用弹性损失三角形,进行多种故障情况下区域轨道交通网络的最优恢复策略研究。也有学者研究了单一网络中的连边故障失效及针对网络连边的修复19-22。近来,有研究人员把单一网络中相关理论推广移植到多层网络,结合多层网络层内
13、异构性、层间耦合等因素23-25开展了多层网络的修复性研究。赵善男26提出了一种基于网络节点特征的故障修复策略,以北京市公共汽车轨道交通网络为例,验证分析了该修复策略的可行性。根据初始攻击比例的不同,相依网络发生级联失效后处于完全崩溃状态或不完全崩溃状态,文献 27 针对这 2 种网络状态建立了相应的模型,提出了相应的择优修复策略。文献 28 分析了相依网络在修复过程中的级联故障,提出了一个修复鲁棒性指数,用于评估相依网络对修复过程中的级联故障的修复能力,采用基于网络中心性知识的 6 种策略来找到重要节点,通过保护重要节点以增强相依网络在修复中的鲁棒性。为实现在相依网络出现故障时及时响应,且在
14、故障蔓延的同时修复失效节点及失效边,将损失降到最小。文献 29提出了一种基于一对一点耦合相依网络的级联失效过程与修复过程动态交替的修复模型。在该模型中,通过定义共同边界节点,即与相对应的网络中的极大连通片的拓扑距离都为 1 的耦合失效节点对,在每一轮修复过程中,对共同边界节点进行随机修复。文献 30 在此基础上做进一步研究,根据边界节点与极大连通片内外节点的原有链接对共同节点进行择优修复。以上这些关于相依网络级联失效修复的研究成果大多是针对节点相依网络,即网络间的节点具有依赖关系。然而,由于现实中许多网络功能体现在连边上,相互依赖关系体现在网络连边相互依赖而不是节点相互依赖。如公司之间的资金交
15、易网络与供应链网络,当公司之间的资金来往被阻断时,它们之间的商品供应链关系势必将受到损害,这种资金交易及供应链关系的破坏将进一步威胁到其他相关公司之间的金融联系,最终可能导致整个系统的级联故障。对于这类边耦合相依网络,文献 31-36 以不同的方法构建了此类网络的级联失效理论分析模型,但关于此种边耦合网络模型的修复研究尚待开展。因此,本文借鉴文献 29 中的点耦合相依网络动态修复模型,通过定义出共同边界连边,构建出边耦合相依网络中的动态修复模型,对共同边界连边进行择优修复,寻找最优修复策略,使得边耦合相依网络在随机故障及蓄意攻击下能够快速有效地得到修复。从网络发生级联失效进入稳态时极大连通片的
16、规模,及进入稳态所需要的迭代步数 2 方面来评估修复效果。1 边耦合相依网络修复模型在文献 29 的修复模型中,通过定义共同边239高彦丽,等:边耦合相依网络动态修复策略研究第 1 期 界节点,开创性地提出了一种适用于相依网络的动态修复模型。该模型中点耦合相依网络的级联失效过程与修复过程动态交替,在每一轮修复过程中,对共同边界节点进行修复。而在 Gao 等31提出的边耦合相依网络中,因为网络间的依赖关系存在于 2 个网络的连边之间,所以并不存在共同边界节点。为构建适用于边耦合相依网络的动态修复模型(下文简称修复模型),本文定义了共同边界连边(mutual boundary edges)。eAi
17、(eBj)aibjGAGBeBj(eAi)GBGA共同边界连边是指在网络 A(网络 B)中一条失效连边连接着一个失效节点()与网络A(B)中极大连通片(giant component of internetA/B,/),并且在网络 B(网络 A)与其耦合的失效连边同样连接着极大连通片(),那么就称这一对耦合连边为共同边界连边,如图 1。在修复模型中,只有共同边界连边才能作为待修复候选目标。这样的定义具有现实性和合理性:1)现实世界中,当基础设施网络发生故障时,受时空等物理条件的限制,通常都是优先抢修正常区域周边的设施单位,由近到远逐步修复;2)如果候选修复目标不是共同边界连边,那么就很有可能因
18、其对应的耦合连边并不连接着脱离极大连通片而反复失效,导致这样的修复行为没有实际意义。e1Ae1Be2Be3Be3Ae2AGCAGCB 图 1 边耦合相依网络的共同边界连边Fig.1 Mutual boundary edges of edge-coupled interde-pendent networks eA3eB3GCB(eA3,eB3)(eA1,eB1)(eA2,eB2)图 1 中,连边对应的耦合连边并不连接着,所以耦合连边并不是共同边界连边,与才是。节点之间的虚线代表失效连边,连边之间的双向箭头表示连边之间存在耦合关系。1 p修复模型可分为初始阶段、级联失效阶段和修复阶段 3 个阶段。
19、在初始阶段,随机选择或特意选择网络 A 中比例的边使其失效,模拟真实网络中的随机攻击及蓄意攻击。根据文献 31中的相依网络模型,节点脱离极大连通片即失效,节点相连边也随之失效。修复模型具体逻辑流程如下:1 pGCA1)网络 A 遭遇初始故障,网络中比例的连边失效,脱离的节点及其相连边失效;eAieBiGCB2)由于网络 A 中连边失效导致网络 B 中与之有耦合关系的连边失效,另外由此造成的部分节点脱离失效,其相连边一并失效;3)修复机制介入,筛选出共同边界连边,对共同边界连边进行选择性修复:eAjeBjeAjGCA4)网络 A 中正常连边的耦合连边失效,则失效,脱离的节点及其相连边失效;5)重
20、复步骤 2)4),直到整个相依网络达到稳定状态,不再有新的节点与连边失效,修复模型流程终止。2 边耦合相依网络修复策略对共同边界连边的择优筛选方法有经典的随机修复策略(randomly repair strategy,RR),及根据连边基础属性介数的择优筛选策略(selective re-pair strategy based on edge betweenness,SREB),对介数值大的共同边界连边进行修复。针对边耦合相依网络,判断连接边的重要性还可以依据连边冗余度31,连边冗余度是连边两端节点除去连边本身的其他连边数之和,能够衡量连边失效之后节点不易失效的能力,并且连边冗余度大的连边有着
21、更大的概率连接着那些度大的节点,因此本文提出以共同边界连边的复合冗余度值(compound excessive degree,CED)作为共同边界连边择优指标的复合冗余度择优修复(se-lective repair strategy based on compound excessivedegree,SRCED),复合冗余度为共同边界连边中2条连边的连边冗余度之和。SRCED方法步骤如下:1)在网络未遭受故障或攻击时,计算相依网络中各耦合连边 CED 值;2)第 n 次迭代时,在修复阶段筛选出相依网络中所有共同边界连边;3)对共同边界连边的 CED 值进行降序排序,筛选出前 的共同边界连边进行
22、修复。另外受 CED 的概念启发,本文进一步提出一种改进的复合冗余度择优修复方法(Improved se-lective repair strategy based on compound excessivedegree,ISRCED),ISRCED 方法步骤如下:1)第 n 次迭代时,在修复阶段筛选出相依网络中所有共同边界连边;(eAm,eBm)m=1,2,2)计算共同边界连边,;在初第 19 卷智能系统学报240 K0始未故障网络中的 CED 值:K0=eAm+eBmeim=Kip+Kiq1(1)KipKiqeim式中与为网络 i 中连边两边端点 p 和 q 的度值;(eAm,eBm)K1
23、3)计算共同边界连边在第 n 次迭代中现存网络中的 CED 值:K1=eAm+eBmeim=Kip+Kiq1(2)eAmeBmbjKipKiqeim式中:与是共同边界连边在现存网络中的连边冗余度,与为现存网络 i 中连边两边端点 p、q 的度值;ImIm4)计算共同边界连边 ISRCED 重要性指标,值越大,意味着共同边界连边两端节点连接着更多的失效节点,后续迭代中有更多共同边界连边出现:Im=K0+K1(3)Im5)根据重要性指标,对共同边界连边进行降序排列,选择前 的共同边界连边进行修复。3 修复策略仿真结果与分析本文对上述 4 种可能的修复策略进行仿真分析,目的是为边耦合相依网络的修复找
24、到最佳最有效的策略。以下为修复策略评价指标和方法:1)观察网络中极大联通片中的存活节点比例(giant component,GC)及相依网络迭代至稳定状态的迭代步数(number of iteration steps,NOI)随相依网路初始故障下存留连边比例 p 的变化情况曲线,不同曲线中在同一横坐标时的 GC 值的大小体现着相依网络使用不同修复策略的鲁棒性,GC 值越大鲁棒性越好;同一横坐标时的迭代步数越少,意味着实施该修复策略下网络进入稳态越快。PcPc2)比较不同修复策略下相依网络极大连通片曲线纵坐标 GC 值从 0 变为非零值的阈值点,值越小,相依网络鲁棒性越好,这意味着相依网络能够承
25、受更大程度的初始故障攻击。RrcRrc3)使用修复鲁棒系数(recover robustness,)28来衡量实施不同修复策略下网络鲁棒性。计算公式为Rrc=PRfrc(p)(4)PRfrc(p)Rrc式中:修复区间为选中的故障攻击下存活连边比例 p 的区间,为相依网络稳态时,网络存活节点比例。修复鲁棒系数以数值的方式,衡量着不同修复策略在某一修复区间的鲁棒性。k=5Kmin=2 Kmax=70为简化分析比较各种策略的有效性,本文就现实中具有代表性的 ER(Erds-Rnyi)随机网络和 SF(Scale-Free)无标度网络构建同构相依网络,进行级联失效动态修复仿真。参照文献 31 的取值和
26、方法,构建 ER-ER 相依网络、SF-SF 相依网络,网络中子网络节点规模为 10 000,网络总规模N=20 000,ER 网络节点平均度为,SF 网络,=2.8。在 R 语言仿真平台上根据以上数据,对构建的相依网络进行随机故障以及蓄意攻击下的仿真模拟,以下数据均为 100 次独立重复仿真实验的平均值。3.1 随机故障下的修复pc=0.339p0.339=0.116 p0.339=0.119pcRrc图 2 表示共同边界连边修复比例=3%时,ER-ER 相依网络以及 SF-SF 相依网络在遭受故障攻击后,网络中极大连通片中的存活节点比例GC 及相依网络迭代至稳定状态的迭代步数(number
27、 of iteration steps,NOI)随相依网路初始故障下存留连边比例 p 的变化情况。图 2 中空白菱形为对应存留连边比例 p 下相依网络不修复(norepair,NR)时的极大连通片规模曲线。以图 2(a)ER-ER 网络上随机修复策略(RR)曲线为例,可将相依网络修复分为 3 个阶段,分别为不可修复阶段(网络崩毁,稳态下节点存活比例少于 0.1%,曲线 GC 值接近 0)、完全修复阶段(稳态下节点存活比例大于 99%,曲线 GC 值接近 1),及部分修复阶段(稳态下节点存活比例介于不可修复阶段和完全阶段之间)。观察图 2(a)可见,相比于其他策略,实施 SREB、SRCED 策
28、略下的相依网络在同一阈值点,分别以、的节点存活比例更早进入部分修复阶段,表明这 2 种修复策略下的相依网络鲁棒性优于其他策略。图 2(c)为不同修复策略下 ER-ER 相依网络级联失效迭代至稳定状态的迭代步数情况,可以看到在各修复策略的完全修复阶段,ISRCED修复策略所需的迭代步数远少于其他策略。随着共同边界连边修复比例的增大,如图 3(a)、图 3(c)、图 4(a)、图 4(c)所示,SREB、SRCED 修复策略的阈值点依然相同且小于其他策略,保持着鲁棒性良好的优势,能够在更大的连边初始故障比例下起效,并且因为修复比例的增加鲁棒性优势有进一步的提升,但是在部分修复阶段,比较表 1、表
29、2 中各策略下网络的修复鲁棒系数可以证明,SREB 修复策略相较于 SRCED 修复策略能够更多的修复回失效节点。而当修复比例较小时,ISRCED 修复策略在进入完全修复阶段时所需的迭代步数少于其他各策略,如图 2(c)、图 3(c);当241高彦丽,等:边耦合相依网络动态修复策略研究第 1 期 修复比例较大时,SREB 修复策略在进入完全修复阶段时所需的迭代步数,其曲线开始与 IS-RCED 修复策略的迭代步数曲线重叠,具有相同的迭代步数优势,如图 4(c)。这意味着在修复比例较大时,在 ER-ER 相依网络中,可以直接使用SREB 修复策略作为全局最优修复策略。0.300.320.340.
30、360.380.4000.20.40.60.81.00.300.320.340.360.380.400501001502000.320.340.360.380.400.4200.20.40.60.81.00.320.340.360.380.400.42050100150200250pGC(a)ER-ER 网络稳态存留节点比例 SREB SRCED ISRCED RR NRNOI SREB SRCED ISRCED RRp(b)ER-ER 网络迭代步数GC SREB SRCED ISRCED RR NRp(c)SF-SF 网络稳态存留节点比例NOI SREB SRCED ISRCED RRp(d
31、)SF-SF 网络迭代步数 图 2 随机故障下=3%时,不同修复策略下相依网络稳态时极大连通片规模及迭代步数曲线Fig.2 When=3%under random faults,the curves of the giant component size and the number of iteration steps in thesteady state of the interdependent networks under different recover strategies 0.300.320.340.360.380.400.42020406080100120140160(a)E
32、R-ER 网络稳态存留节点比例(b)ER-ER 网络迭代步数(c)SF-SF 网络稳态存留节点比例NOIp SREB SRCED ISRCED RR(d)SF-SF 网络迭代步数0.280.300.320.340.360.3800.20.40.60.81.0GCp SREB SRCED ISRCED RR NR0.280.300.320.340.360.38020406080100120140NOIp SREB SRCED ISRCED RR0.300.320.340.360.380.400.4200.20.40.60.81.0GCp SREB SRCED ISRCED RR NR 图 3 随
33、机故障下=5%时,不同修复策略下相依网络稳态时极大连通片规模及迭代步数曲线Fig.3 When=5%under random faults,the curves of the giant component size and the number of iteration steps in thesteady state of the interdependent networks under different recover strategies 第 19 卷智能系统学报242 0.240.260.280.300.320.340.3600.20.40.60.81.0051015202530
34、354000.20.40.60.81.001020304050GCp0.240.260.280.300.320.340.36p0.240.260.280.300.320.340.36p0.240.260.280.300.320.340.36p SREB SRCED ISRCED RR NR(a)ER-ER 网络稳态存留节点比例NOI SREB SRCED ISRCED RR(b)ER-ER 网络迭代步数GC SREB SRCED RR NR(c)SF-SF 网络稳态存留节点比例NOI SREB SRCED ISRCED RR(d)SF-SF 网络迭代步数 ISRCED 图 4 随机故障下=20
35、%时,不同修复策略下相依网络稳态时极大连通片规模及迭代步数曲线Fig.4 When=20%under random faults,the curves of the giant component size and the number of iteration steps in thesteady state of the interdependent networks under different recover strategies Rrc表 1 随机故障下 ER-ER 相依网络不同修复比例下不同修复策略下网络的值(p=0.003)RrcTable 1 The value of the
36、 network under different re-cover strategies under different recover ratios ofER-ER interdependent networks under randomfaults(p=0.003)修复比例及修复区间SREBSRCEDISRCEDRRPR=3%=0.33,0.360.5960.5980.4880.472PR=5%=0.32,0.350.5810.5440.3770.359PR=20%=0.29,0.320.6430.6340.3860.372 Rrc表 2 随机故障下 SF-SF 相依网络不同修复比例下不同
37、修复策略下网络的值(p=0.003)RrcTable 2 The value of the network under different re-cover strategies under different recover ratios ofSF-SF interdependent networks under randomfaults(p=0.003)修复比例及修复区间SREBSRCEDISRCEDRRPR=3%=0.34,0.400.7540.6730.1990.354PR=5%=0.31,0.400.7540.6610.2020.351PR=20%=0.25,0.350.8120.7
38、290.1180.419 对以上的结论可以做如下的解释:在网络连边初始故障比例较大时,从图 2(a)、图 3(a)、图 4(a)Im中网络不修复曲线可以看到网络结构与功能遭受到彻底的破坏,当网络连边初始存留比例 p0.36 时,稳态下相依网络中节点比例接近 0,近乎没有节点存留。从级联失效过程出发,网络的崩溃并不是瞬时的,有一个迭代的过程,迭代过程中因为随机故障的随机性质,度值大的节点总是能够有更大的几率连接到网络极大连通片从而存活下来,而那些因为随机故障而脱离极大连通片的节点也为度值大而更容易有连边成为共同边界连边,同时也因为节点度值大,其连边相较于其他度值小的节点的连边,一般拥有着更大的介
39、数值以及 CED 值,这使得这些介数值以及 CED 值大的连边更容易成为 SREB、SRCED 修复策略的择优目标。通过将度值大的失效节点重新连回极大联通片,这种对节点及其连边直接有效的筛选使得 SREB、SRCED 修复策略能够相比其他策略更早地起效。当相依网络所遭受的连边初始故障比例不那么大时,就进入到了 ISRCED 的优势阶段,从 ISRCED 重要性指标考虑,可以知道 IS-RCED 修复策略所筛选出的连边在每一轮迭代时的现有网络中总是连接着那些拥有更多失效连边的节点,他使得 ISRCED 修复策略能够在下一轮迭代时拥有更多的候选共同边界连边,在相同的修复比例下修复回更多的节点,以更
40、少的迭代步数使网络进入稳态。图 2(b)与图 2(d)分别为共同边界连边修复比243高彦丽,等:边耦合相依网络动态修复策略研究第 1 期 例=3%时的 SF-SF 相依网络在遭受不同比例的初始连边故障攻击后,经由不同修复策略,网络进入稳态时的极大连通片规模以及所需迭代步数。图 2(b)中曲线可以看出,在 SF-SF 相依网络中,随机故障下 SREB 修复策略能够在更大的连边初始故障比例下更早的生效,使相依网络拥有更小的阈值点,鲁棒性更好。并且因为 SF-SF 网络中大部分节点只拥有少量的连边,而网络中占少数的 Hub 节点拥有着极高的度值,Hub 节点其连边天然的就具有高的介数值,这使得 SR
41、EB 修复策略在 SF-SF 网络中相比在 ER-ER 网络中表现出更强的修复鲁棒性,与其他修复策略在阈值点比较上差别更明显。类似的,在修复比例为=5%(图 3(b)、(d)、及=20%(图 4(b)、(d)时,SREB 策略同样的具有修复鲁棒性好的优势。不过不同于在 ER-ER 网络中,ISRCED 修复策略在完全修复阶段并不具有迭代步数少的优势了,这是因为 SF-SF 网络中 Hub 节点占据的比例很小,大部分连边所连接的是度数小的节点,使用 IS-RCED 修复策略对共同边界连边进行筛选,在修复完少部分的连接着 Hub 节点的共同边界连边后,这种筛选方法在接下来的迭代过程中作用并不明显,
42、进入网络稳态所需的迭代步数甚至多于RR 修复策略。SREB 修复策略成为在完全修复阶段进入网络稳态所需迭代步数最少的策略,这表明随机故障下的 SF-SF 相依网络中,SREB 修复策略为全局最优修复策略,不论修复比例的大小。3.2 蓄意攻击下的修复复杂网络的发生级联失效时,随机故障从来不是唯一的风险,被敌方蓄意攻击也是一种情况。图 5 为 ER-ER 相依网络与 SF-SF 相依网络,在 4 种蓄意攻击方法下存活节点比例的情况。(a)ER-ER 网络蓄意攻击曲线(b)SF-SF 网络蓄意攻击曲线0.20.40.60.81.000.20.40.60.81.0GCGCpp SNBA INBA SN
43、CEDA INCEDA0.20.40.60.81.000.20.40.60.81.0GCGCpp SNBA INBA SNCEDA INCEDA0.350.300.4000.10.20.450.500.5500.10.2 图 5 不同攻击方法下相依网络稳态时极大连通片规模随初始攻击比例 p 的变化Fig.5 Changes in the size of the giant component with the initial attack ratio p in the steady state of the interdependent net-works under different at
44、tack methods 4 种蓄意攻击方法为考虑单一网络的连边介数攻击(single network betweenness attack,SNBA)以及连边 CED 值攻击(single network CED attack,SNCEDA),考虑相依网络 2 个子网络的连边介数攻击(interdependent network betweenness attack,IN-BA)和连边 CED 值攻击(interdependent networkCED attack,INCEDA)。图 5 可以看到,ER-ER 相依网络中在初始攻击比例较小,初始存留连边比例 p 较大时,SN-BA、INBA
45、 以及 INCEDA 攻击方法曲线高度重合,在攻击效果是效果上优于 INCEDA 攻击方法,能够较为有效的破坏网络导致更多失效节点的出现。而在初始存留连边比例 p 较小时,如p0.4 时,INCEDA 攻击手段展现出了优于其他3 种攻击方法的攻击效果,在网络相变阈值点上大于其他节点,相同攻击比例下 INCEDA 攻击方法使得网络更早的崩溃。SF-SF 相依网络中 p 较大时以 SNBA 攻击方法效果最优,p 较小时以 IN-CEDA 攻击方法效果最优。本文选择使得相依网络级联失效相变点最大的攻击方法,即 ER-ER、SF-SF 相依网络攻击方法都为 INCEDA 攻击方法。Rrc观察图 6(a
46、)、图 6(c)和图 7(a)、图 7(c)可以看出,在 ER-ER 相依网络遭受到蓄意攻击时,在共同边界连边修复比例较小的情况下,相较于其他修复策略,实施 ISRCED 修复策略的相依网络在稳态下的存活节点比例以及所需迭代步数上都具有一定的优势。如图 8(a)所示,在共同边界连边修复比例=20%时,SRCED、ISRCED 以及SREB 修复策略的曲线,在图像上存有密切贴合之处,且拥有着同样的网络阈值点,以及在同样的 p 值下进入完全修复阶段,但是通过比较表 3中不同修复比例下实施各修复策略的网络的值能证明,部分修复阶段 ISRCED 修复策略下的网络在稳态下的存活节点比例更大,其在迭代步数
47、上的显著优势可以通过直接观察图 68得知,在蓄意攻击下的 ER-ER 网络中,可以直接使用 ISRCED 修复策略作为全局修复策略。当SF-SF 相依网络遭受蓄意攻击当修复比例较小时,见图 6(b),各修复策略的 GC 值曲线难以通过直接观察分出高低,但是借助修复鲁棒系数第 19 卷智能系统学报244 RrcRrc(见表 4)可以看到,SRCED 修复策略下网络的值在修复比例=3%时高于其他策略,但随着修复比例的提升,SREB 修复策略的值大于其他策略,在图 7(b)、图 8(b)中也能看出。实施 IS-RCED 修复策略的网络在鲁棒性上甚至弱于RR 随机修复策略,拥有着更大的阈值点,但是如同
48、在 ER-ER 相依网络中,其在完全修复阶段使网络进入稳态所需的迭代步数远远少于其他策略,这一点在不同修复比例下均成立,见图 6(d)、图 7(d)、图 8(d)。(a)ER-ER 网络稳态存留节点比例(b)ER-ER 网络迭代步数(c)SF-SF 网络稳态存留节点比例(d)SF-SF 网络迭代步数0.320.340.360.380.400.4200.20.40.60.81.0GCp SREB SRCED ISRCED RR NR0.320.340.360.380.400.4220020406080100120140160180NOIp SREB SRCED ISRCED RR0.460.48
49、0.500.520.540.5600.20.40.60.81.0GCp SREB SRCED ISRCED RR NR0501001502002500.460.480.500.520.540.56pNOI SREB SRCED ISRCED RR 图 6 蓄意攻击下=3%时,不同修复策略下相依网络稳态时极大连通片规模及迭代步数曲线Fig.6 When=3%under deliberate attack,the curves of the giant component size and the number of iteration steps in thesteady state of th
50、e interdependent networks under different recover strategies (a)ER-ER 网络稳态存留节点比例(b)ER-ER 网络迭代步数(c)SF-SF 网络稳态存留节点比例(d)SF-SF 网络迭代步数0.320.340.360.380.400.4200.20.40.60.81.0GCp SREB SRCED ISRCED RR NR0204060801001200.320.340.360.380.400.42pNOI SREB SRCED ISRCED RR0.440.460.480.500.520.540.5600.20.40.60.
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100