ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:169.88KB ,
资源ID:2384622      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2384622.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(二元一次方程组解法练习题精选(含答案).docx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二元一次方程组解法练习题精选(含答案).docx

1、二元一次方程组解法练习题精选(含答案)二元一次方程组解法练习题精选(含答案) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(二元一次方程组解法练习题精选(含答案))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为二元一次方程组解法练习题精选(含答案)的全部内容。二元一次方程组解法练习题精选(含答案)一解答题(共16小题)1

2、求适合的x,y的值2解下列方程组(1)(2)(3)(4)3解方程组:4解方程组:5解方程组:6已知关于x,y的二元一次方程y=kx+b的解有和(1)求k,b的值(2)当x=2时,y的值(3)当x为何值时,y=3?7解方程组:(1);(2)8解方程组:9解方程组:10解下列方程组:(1)(2)11解方程组:(1)(2)12解二元一次方程组:(1);(2)13在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解1415解下列方程组:(1);(2)16解下列方程组:(1)(2)17.方程组的解是否满

3、足2xy=8?满足2xy=8的一对x,y的值是否是方程组的解?二元一次方程组解法练习题精选(含答案)参考答案与试题解析一解答题(共16小题)1求适合的x,y的值考点:解二元一次方程组809625 分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值解答:解:由题意得:,由(1)2得:3x2y=2(3),由(2)3得:6x+y=3(4),(3)2得:6x4y=4(5),(5)(4)得:y=,把y的值代入(3)得:x=,点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法2解下列方程组(1)(2)(3)(4)考点:解二元一次方程

4、组809625 分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解解答:解:(1)得,x=2,解得x=2,把x=2代入得,2+y=1,解得y=1故原方程组的解为(2)32得,13y=39,解得,y=3,把y=3代入得,2x33=5,解得x=2故原方程组的解为(3)原方程组可化为,+得,6x=36,x=6,得,8y=4,y=所以原方程组的解为(4)原方程组可化为:,2+得,x=,把x=代入得,34y=6,y=所以原方程组的解为点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:相同未知数的系数相同或互为相反数时,

5、宜用加减法;其中一个未知数的系数为1时,宜用代入法3解方程组:考点:解二元一次方程组809625 专题:计算题分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法解答:解:原方程组可化为,43,得7x=42,解得x=6把x=6代入,得y=4所以方程组的解为点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元消元的方法有代入法和加减法4解方程组:考点:解二元一次方程组809625 专题:计算题分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单解答:解:(1)原方程组化为,+得:6x=18,x=3代入得:y=所以原方程组的解为点评:要注意

6、:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法本题适合用此法5解方程组:考点:解二元一次方程组809625 专题:计算题;换元法分析:本题用加减消元法即可或运用换元法求解解答:解:,得s+t=4,+,得st=6,即,解得所以方程组的解为点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法6已知关于x,y的二元一次方程y=kx+b的解有和(1)求k,b的值(2)当x=2时,y的值(3)当x为何值时,y=3?考点:解二元一次方程组809625 专题:计算题分析:(1)将两组x,y的值代入

7、方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值(3)将(1)中的k、b和y=3代入方程化简即可得出x的值解答:解:(1)依题意得:得:2=4k,所以k=,所以b=(2)由y=x+,把x=2代入,得y=(3)由y=x+把y=3代入,得x=1点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数7解方程组:(1);(2)考点:解二元一次方程组809625 分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答解答:解:(1)原方程组可

8、化为,2得:y=1,将y=1代入得:x=1方程组的解为;(2)原方程可化为,即,2+得:17x=51,x=3,将x=3代入x4y=3中得:y=0方程组的解为点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法根据未知数系数的特点,选择合适的方法8解方程组:考点:解二元一次方程组809625 专题:计算题分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解解答:解:原方程组可化为,+,得10x=30,x=3,代入,得15+3y=15,y=0则原方程组的解为点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减

9、消元法解方程组9解方程组:考点:解二元一次方程组809625 专题:计算题分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题解答:解:原方程变形为:,两个方程相加,得4x=12,x=3把x=3代入第一个方程,得4y=11,y=解之得点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目10解下列方程组:(1)(2)考点:解二元一次方程组809625 专题:计算题分析:此题根据观察可知:(1)运用代入法,把代入,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解解答:解:(1),由,得x=4+y,代入

10、,得4(4+y)+2y=1,所以y=,把y=代入,得x=4=所以原方程组的解为(2)原方程组整理为,23,得y=24,把y=24代入,得x=60,所以原方程组的解为点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用11解方程组:(1)(2)考点:解二元一次方程组809625 专题:计算题;换元法分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,xy=b,然后解新方程组即可求解解答:解:(1)原方程组可化简为,解得(2)设x+y=a,xy=b,原方程组可化为,解得,原方程组的解为点评:此题考查了学

11、生的计算能力,解题时要细心12解二元一次方程组:(1);(2)考点:解二元一次方程组809625 专题:计算题分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值解答:解:(1)将2,得15x=30,x=2,把x=2代入第一个方程,得y=1则方程组的解是;(2)此方程组通过化简可得:,得:y=7,把y=7代入第一个方程,得x=5则方程组的解是点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用13在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为(1)甲把

12、a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解考点:解二元一次方程组809625 专题:计算题分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程和,求出正确的a、b,然后用适当的方法解方程组解答:解:(1)把代入方程组,得,解得:把代入方程组,得,解得:甲把a看成5;乙把b看成6;(2)正确的a是2,b是8,方程组为,解得:x=15,y=8则原方程组的解是点评:此题难度较大,需同学们仔细阅读,弄清题意再解答14考点:解二元一次方程组809625 分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可解答:解:由原方程组,得,由(1)

13、+(2),并解得x=(3),把(3)代入(1),解得y=,原方程组的解为点评:用加减法解二元一次方程组的一般步骤:1方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3解这个一元一次方程;4将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解15解下列方程组:(1);(2)考点:解二元一次方程组809625 分析:将两个方程先化简,再选择正确的方法进行消元解答:解:(1)化简整理为,3,得3x+3y=1500,,

14、得x=350把x=350代入,得350+y=500,y=150故原方程组的解为(2)化简整理为,5,得10x+15y=75,2,得10x14y=46,得29y=29,y=1把y=1代入,得2x+31=15,x=6故原方程组的解为点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程16解下列方程组:(1)(2)考点:解二元一次方程组809625 分析:观察方程组中各方程的特点,用相应的方法求解解答:解:(1)2得:x=1,将x=1代入得:2+y=4,y=2原方程组的解为;(2)原方程组可化为,2得:y=3,y=3将y=3代入得:x=2原方程组的解为点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服