1、完整版)向量的概念和基本运算 第六章 平面向量、复数 考试内容: 1.平面向量 向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示. 线段的定比分点.平面向量的数量积.平面两点间的距离、平移. 2。复数 复数的概念. 复数的加法和减法. 复数的乘法和除法. 数系的扩充. 考试要求: 1.平面向量 (1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算
2、. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式. 2.复数 (1)了解复数的有关概念及复数的代数表示和几何意义. (2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算. (3)了解从自然数系列复数系的关系及扩充的基本思想. g3。1053 向量的概念和基本运算 一、知识回顾 1.向量的概念 (1)向量的基本要素:大小和方向。(2)向量的表示:几何表示
3、法 ;字母表示:a; 坐标表示法 a=xi+yj=(x,y)。 (3)向量的长度:即向量的大小,记作|a|。 (4)特殊的向量:零向量a=O|a|=O. 单位向量:aO为单位向量|aO|=1. (5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2) (6) 相反向量:a=—bb=-aa+b=0 (7)平行向量(共线向量):方向相同或相反的向量,称为平行向量.记作a∥b.平行向量也称为共线向量. 2.向量的运算 运算类型 几何方法 坐标方法 运算性质 向量的 加法 1.平行四边形法则 2.三角形法则 向量的 减法 三
4、角形法则 , 数 乘 向 量 1。是一个向量,满足: 2。>0时,同向; 〈0时,异向; =0时,. 向 量 的 数 量 积 是一个数 1。时, . 2. 3.重要定理、公式 (1)平面向量基本定理 e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1, λ2,使a=λ1e1+λ2e2。 (2)两个向量平行的充要条件 a∥ba=λb(b≠0)x1y2-x2y1=O。 (3)两个向量垂直的充要条件 a⊥ba·b=Ox1x2+y1y2=O。
5、4)线段的定比分点公式 设点P分有向线段所成的比为λ,即=λ,则 =+ (线段的定比分点的向量公式) (线段定比分点的坐标公式) 当λ=1时,得中点公式: =(+)或 (5)平移公式 设点P(x,y)按向量a=(h,k)平移后得到点P′(x′,y′), 则=+a或 曲线y=f(x)按向量a=(h,k)平移后所得的曲线的函数解析式为:y-k=f(x-h) 二、 基本训练 1.已知分别是的边上的中线,且,则为 ( ) A。 B.
6、 C。 D。 2.已知,则是三点构成三角形的 ( ) A。 充分不必要条件B。 必要不充分条件 C。 充要条件D.既不充分也不必要条件 3.若 ( ) A。 B. C. D. 4.设,则C、D的坐标分别是 ( ) A。 B. C. D. 5.已知,若,则。 6.对平面内任意的四点A,B,C,D,则. 7.若的方向相反,且 8.化简: (1)_____________。 (2)______________。 (3)_______
7、 9。(04年上海卷。理6)已知点,若向量与同向, =,则点B的坐标为. 10.判断下列命题是否正确 (1)若,则. (2)两个向量相等的充要条件是它们的起点相同,终点相同。 (3)若,则是平行四边形。 (4)若是平行四边形,则。 (5)若,则。 (6)若,则。 三、例题分析 例1.已知是内的一点,若,求证:是的重心. 例2.已知,,,且,求x。 4 例3.是梯形,且,分别是和的中点,设,试用表示和 例4.已知,(如图),求证:A、B、C三点在一直线上的充要条件是存在不全为0的实数l、m、n使得. A B C O 例5
8、在水流速度为的河中,如果要使船的速度行驶方向与两岸垂直,并使船速达到12,求船的航行速度与方向。 四、作业 同步练习 g3.1053 向量的概念和基本运算 1.下面给出四个命题:①对于实数m和向量,恒有 ②对于实数m、n和向量,恒有 ③若 ④若,则m=n 其中正确的命题个数是 ( ) A、1 B、2 C、3 D、4 2.在平行四边形中,若,则必有 ( ) A。 B。 C。 是矩形 D。 是正方形 3.已知,则的取值范围是 ( )
9、 A。 [3,8] B. (3,8) C. [3,13] D. (3,13) 4。(04年浙江卷.文4)已知向量且,则=( ). A.B. C. D. 5.下列命题中,正确的是( ) A. 若,则 B. 若,则C。 若,则 D。 若,则 6.下列说法中错误的是( ) A。向量的长度与向量的长度相等 B.任一非零向量都可以平行移动 C.长度不等且方向相反的两个向量不一定是共线向量 D.两个有共同起点而且相等的向量,其终点必相同。 7。若三点共线,则 ( ) A. B. 3
10、 C。 D. 51 8.已知正方形ABCD的边长为1,,则的模等于 ( ) A。0 B。3 C。 D。2 9. (05全国卷III)已知向量,且A、B、C三点共线,则 10.(05湖北卷)已知向量不超过5,则k的取值范围是 11.(05广东卷)已知向量,,且,则x为_____________. 12.分别是的边的中点,且给出下列命题 ①②③④ 其中正确的序号是_________。 13.若,则__________。 14.两列火车,先各从一站台沿相反方向开出,走了相同的路程,这两
11、列火车位移的和是______。 15.已知不共线,,当______时,共线. 16、证明:始点在同一点的向量的终点在同直线上。 17.如图,是以向量为边的平行四边形,又,试用表示。 A C B O 18、如图,已知的夹角为1200,的夹角为300,用. 答案: 基本训练:1、B 2、B 3、B 4、A 5、 6、 7、8、(1) (2) (3)9、 10、(1)× (2)× (3)× (4)√ (5)√ (6)× 例题分析:例1、略 例2、4 例3、, 例4、略 例5、沿水流方向且与河岸夹角为的方向行驶,速度为 作业:1—8、DCCABC 7、k=8、[-6,2]9、4 10、①②③④11、 12、13、 14、略 15、,, 16、






