ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:454.54KB ,
资源ID:2379738      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2379738.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(铁岭市重点中学2022-2023学年高一数学第一学期期末调研模拟试题含解析.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

铁岭市重点中学2022-2023学年高一数学第一学期期末调研模拟试题含解析.doc

1、2022-2023学年高一上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有

2、一项是符合题目要求的1函数在区间(0,1)内的零点个数是A.0B.1C.2D.32已知函数则A.B.C.D.3设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|4已知,则的最小值为().A.9B.C.5D.5已知,则A.2B.7C.D.66下列函数中,既是奇函数又存在零点的函数是()A.B.C.D.7若幂函数y=f(x)经过点(3,),则此函数在定义域上是A.偶函数B.奇函数C.增函数D.减函数8若条件p:,q:,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件9函数f(x)=lnx+3x-

3、7的零点所在的区间是()A.B.C.D.10设且则( )A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11已知半径为的扇形的面积为,周长为,则_12已知角A为的内角,则_13若函数在区间上单调递减,则实数的取值范围是_14已知集合 ,则集合的子集个数为_.15设函数f(x)的定义域为R,f(x1)为奇函数,f(x2)为偶函数,当x1,2时,f(x)ax2b.若f(0)f(3)6,则f()_.16以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.

4、一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积是_.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17已知函数(是常数)是奇函数,且满足.(1)求的值;(2)试判断函数在区间上的单调性并用定义证明.18已知集合,(1)当,求;(2)若,求的取值范围.19某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2,三月底测得覆盖面积为36m2,凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模

5、型更合适,并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份(参考数据:lg203010,lg30.4771)20已知函数f(x)x22ax1a在x0,1时有最大值2,求a的值21已知函数.(1)解关于不等式;(2)若对于任意,恒成立,求的取值范围.参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,在范围内,函数为单调递增函数又,故在区间存在零点,又函数为单调函数,故零点只有一个考点:导函数,函数零点2、A【解析】,.3、B【解析】利用向量共线定理、垂直数量积为0来综合判断.【详解】A:当

6、、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B4、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.5、A【解析】先由函数解析式求出,从而,由此能求出结果【详解】,故选A【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合

7、性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.当出现的形式时,应从内到外依次求值6、A【解析】判断函数的奇偶性,可排除选项得出正确答案【详解】因为是偶函数,故B错误;是非奇非偶函数,故C错误;是非奇非偶函数,故D错误;故选:A.7、D【解析】幂函数是经过点,设幂函数为,将点代入得到此时函数定义域上是减函数,故选D8、B【解析】由条件推结论可判断充分性,由结论推条件可判断必要性【详解】由不能推出,例如,但必有,所以p是q成立的必要不充分条件.故选:B.9、C【解析】由函数的解析式求得f(2)f(3)0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间【详解】函数

8、f(x)=lnx+3x-7在其定义域上单调递增, f(2)=ln2+23-7=ln2-10,f(3)=ln3+9-7=ln3+20, f(2)f(3)0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3), 故选C【点睛】本题主要考查求函数的值,函数零点的判定定理,属于基础题10、C【解析】试题分析:由已知得,去分母得,所以,又因为,所以,即,选考点:同角间的三角函数关系,两角和与差的正弦公式二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据扇形面积与周长公式代入列式,联立可求解半径.【详解】根据扇形面积公式得,周长公式得,联立可得.故答案为:12、#0.6【

9、解析】根据同角三角函数的关系,结合角A的范围,即可得答案.【详解】因为角A为的内角,所以,因为,所以.故答案为:13、【解析】本题等价于在上单调递增,对称轴,所以,得即实数的取值范围是点睛:本题考查复合函数的单调性问题复合函数的单调性遵循“同增异减”的性质所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案14、2【解析】先求出然后直接写出子集即可.【详解】,所以集合的子集有,.子集个数有2个.故答案为:2.15、【解析】由f(x1)为奇函数,f(x2)为偶函数,可得,再结合已知的解析式可得,然后结合已知可求出,从而可得当时,进而是结合前面的式子可求得答

10、案【详解】因为f(x1)为奇函数,所以的图象关于点对称,所以,且因为f(x2)为偶函数,所以的图象关于直线对称,所以,即,所以,即,当x1,2时,f(x)ax2b,则,因为,所以,得,因为,所以,所以当时,所以,故答案为:16、【解析】计算出一个弓形的面积,由题意可知,勒洛三角形由三个全等的弓形以及一个正三角形构成,利用弓形和正三角形的面积可求得结果.【详解】由弧长公式可得,可得,所以,由和线段所围成的弓形的面积为,而勒洛三角形由三个全等的弓形以及一个正三角形构成,因此,该勒洛三角形的面积为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、 (

11、1) ,(2) 在区间(0,0.5)上是单调递减的【解析】()函数是奇函数,则即 -2分由得解得,-6分()解法1:由()知,-8分当时,-10分,即函数在区间上为减函数-12分解法2:设,则-10分 ,即函数在区间上为减函数-12分.18、(1)(2)【解析】(1)首先求出集合,然后根据集合的交集运算可得答案;(2)分、两种情况讨论求解即可.【小问1详解】因为,所以因为,所以【小问2详解】当,即,时,符合题意当时可得或,解得或综上,的取值范围为19、(1)选择较为合适;(2)6月【解析】(1)根据指数函数和幂函数的性质可得合适的函数的模型.(2)根据选择的函数模型可求最小月份.小问1详解】指

12、数函数随着自变量的增大其函数的增长速度越大,幂函数随着自变量的增大其函数的增长速度越小,因为凤眼莲在湖中的蔓延速度越来越快,故选择较为合适.故,故,.所以.【小问2详解】由(1),放入面积为,令,则,故凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份为6月.20、a1或a2【解析】函数的对称轴是,根据与区间的关系分类讨论得最大值,由最大值求得【详解】函数f(x)x22ax1a(xa)2a2a1,对称轴方程为xa(1)当a1时,f(x)maxf(1)a,a2综上可知,a1或a2【点睛】关键点点睛:本题考查二次函数最值问题二次函数在区间最值问题,一般需要分类讨论,分类标准是对称轴与区间的关系,如果

13、,求最小值时分三类:,求最大值只要分两类:和,类似分类21、(1)当时,不等式的解集是 当时,不等式的解集是当时不等式的解集是(2)【解析】(1)将不等式,转化成,分别讨论当时,当时,当时,不等式的解集.(2)将对任意,恒成立问题,转化为,恒成立,再利用均值不等式求的最小值,从而得到a的取值范围.【详解】(1)因为不等式所以即当时,解得当时,解得当时,解得综上:当时,不等式的解集是 当时,不等式的解集是当时不等式的解集是(2)因为对于任意,恒成立所以,恒成立所以,恒成立令因为当且仅当,即时取等号所以【点睛】本题主要考查了含参一元二次不等式的解法以及恒成立问题,还考查了转化化归的思想及运算求解的能力,属于中档题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服