ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:21.92KB ,
资源ID:2376850      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2376850.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(AlphaGo的基本原理.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

AlphaGo的基本原理.docx

1、AlphaGo的基本原理AlphaGo的基本原理 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(AlphaGo的基本原理)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为AlphaGo的基本原理的全部内容。AlphaGo的基本原理 全世界只有3.14 % 的人关注了数据与算法之美继 AlphaGo于2015年8月以50战胜

2、三届欧洲冠军樊麾、2016年3月以41击败世界顶级棋手李世石后,今年1月,AlphGo的升级版本Master横扫各路高手,取得60比0的惊人战绩.20 年前IBM深蓝(Deep Blue)计算机击败国际象棋冠军卡斯帕罗夫的情景还历历在目,短短2年时间,人工智能在围棋领域又创造了人机对抗历史上的新里程碑。根据谷歌DeepMind团队发表的论文,我们可以窥探到AlphaGo的基本设计思路.任何完全信息博弈都无非是一种搜索.搜索的复杂度取决于搜索空间的宽度(每步的选择多寡)和深度(博弈的步数)。对于围棋,宽度约为250,深度约为150。AlphaGo用价值网络(value network)消减深度,

3、用策略网络(policy network)消减宽度,从而极大地缩小了搜索范围。所谓价值网络,是用一个“价值数来评估当前的棋局。如果我们把棋局上所有棋子的位置总和称为一个“状态”,每个状态可能允许若干不同的后续状态。所有可能状态的前后次序关系就构成了所谓的搜索树。一个暴力的搜索算法会遍历这个搜索树的每一个子树.但是,其实有些状态是较容易判断输赢的,也就是评估其“价值”。我们把这些状态用价值表示,就可以据此省略了对它所有后续状态的探索,即利用价值网络削减搜索深度。所谓策略,是指在给定棋局,评估每一种应对可能的胜率,从而根据当前盘面状态来选择走棋策略。在数学上,就是估计一个在各个合法位置上下子获胜的

4、可能的概率分布。因为有些下法的获胜概率很低,可忽略,所以用策略评估就可以消减搜索树的宽度。 更通俗地说,所谓“价值就是能看懂棋局,一眼就能判断某给定棋局是不是能赢,这是个偏宏观的评估.所谓的“策略”,是指在每一步博弈时,各种选择的取舍,这是个偏微观的评估。AlphaGo利用模拟棋手、强化自我的方法,在宏观(价值评估)和微观(策略评估)两个方面提高了探索的效率。在具体算法上,AlphaGo用深度卷积神经网络(CNN)来训练价值网络和策略网络。棋盘规模是(1919),棋盘每个位置编码48种经验特征.把这些特征输入模型进行训练,经过层层卷积,更多隐含特征会被利用。基于类似的卷积神经网络结构,Alph

5、aGo先做策略学习(学习如何下子),再做价值学习(学习评估局面)。策略学习也分为两步。第一步是有监督学习,即“打谱”,学习既往的人类棋谱。第二步是强化学习,即“左右互搏”,通过程序的自我博弈来发现能提高胜率的策略(见图1). 图 1 策略网络和价值网络的训练过程先说“打谱”(有监督学习).AlphaGo学习了KGS网站上3000万个落子位置。它先随机选择落子位置,利用既往的棋谱来“训练”,试图预测人类最可能在什么位置落子.如果仅用落子历史和位置信息,AlphaGo的预测成功率是55.7。如果加上其他特征,预测成功率可以进一步提高到57。在数学上,打谱是用一种梯度下降算法训练模型。给定一个棋局和

6、一个落子方式,为了计算人类棋手会有多大概率采用这种下法,AlphaGo用一个13层的卷积网络来训练这个概率的评估。这也是神经网络应用的经典做法,即基于梯度下降来逼近一个函数的学习,这里函数就是棋手如何落子的概率。 再说“左右互搏”(强化学习)。这是在打谱的基础上,让不同下法的程序之间相互博弈。强化学习的策略网络和有监督学习(打谱)的网络结构一样,也同样利用梯度下降的学习方法.区别在于用一个“回报”(赢棋是1,输棋是-1)来奖励那些会导致最终获胜的策略. 价值网络的学习和策略网络类似,也用类似结构的卷积神经网络。区别在于网络的输出不是一个落子的概率分布,而是一个可能获胜的数值(即“价值”).这个

7、训练是一种回归(regression),即调整网络的权重来逼近每一种棋局真实的输赢预测. 如果只是简单地让程序之间自由博弈,可能会导致过拟合:对训练的数据(棋谱)效果很好,但是对于没见过的棋局效果欠佳。这是因为一盘棋内不同的棋局之间是有依赖关系的,而价值函数并不考虑这些关系。解决方法是用来自不同对弈过程的棋局的落子位置进行训练,避免来自同一棋局的状态之间的“信息污染”(相关性)。有了策略网络和价值网络,就可以进行策略的搜索了。AlphaGo使用了“蒙特卡洛树搜索”(MCTS)算法。所谓搜索,就是给定一个棋局,确定下一步的落子位置。这分为“往下搜”和“往回看”两个环节。在“往下搜”的环节,对给定

8、的棋局,程序选择最可能获胜的落子位置,然后如此类推,直到搜索树上能分出结果的“叶子节点。在“往回看”的环节,一个棋局各种不同的演化可能性被综合评估,用于更新搜索树对棋局的评估.为了提高训练效率,AlphaGo利用图形处理器(GPU)运行深度学习算法(训练价值网络和策略网络),利用CPU运行树搜索算法。因为GPU适合做大吞吐量、低逻辑判断的工作,适合深度学习这种数据量大而逻辑简单的算法。中央处理器(CPU)则恰恰相反,适合蒙特卡洛树搜索这种逻辑复杂的算法。 (本文摘录自从AlphaGo的成功说起,作者张梦迪、郑锦光、张强、鲍捷。即将发表于CCF会刊2017年3月号)-用数据解决不可能-听说,关注这个号的人运气都不会太差噢

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服