ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:324.50KB ,
资源ID:2376672      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2376672.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(直线与圆、圆与圆位置关系.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

直线与圆、圆与圆位置关系.doc

1、第四节直线与圆、圆与圆的位置关系 考纲传真1.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.2.能用直线和圆的方程解决一些简单的问题.3.初步了解用代数方法处理几何问题的思想1判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr相离(2)代数法:联立直线l与圆C的方程,消去y(或x),得一元二次方程,计算判别式b24ac,0相交,0相切,0),圆O2:(xa2)2(yb2)2r(r20).方法位置关系几何法:圆心距d与r1,r2的关系代数法:联立两个圆的方程组成方程组的解的情况相离dr1r2无解外切dr1

2、r2一组实数解相交|r2r1|dr1r2两组不同的实数解内切d|r1r2|(r1r2)一组实数解内含0d|r1r2|(r1r2)无解1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)“k1”是“直线xyk0与圆x2y21相交”的必要不充分条件()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切()(3)如果两圆的圆心距小于两半径之和,则两圆相交()(4)若两圆相交,则两圆方程相减消去二次项后得到的二元一次方程是公共弦所在直线的方程()解析依据直线与圆、圆与圆的位置关系,只有(4)正确答案(1)(2)(3)(4)2(教材改编)圆(x2)2y24与圆(x2)2(y1)

3、29的位置关系为()A内切B相交C外切D相离B两圆圆心分别为(2,0),(2,1),半径分别为2和3,圆心距d.32d32,两圆相交3(2017合肥调研)直线3x4yb与圆x2y22x2y10相切,则b的值是()A2或12B2或12C2或12D2或12D由圆x2y22x2y10,知圆心(1,1),半径为1,所以1,解得b2或12.4在平面直角坐标系xOy中,直线x2y30被圆(x2)2(y1)24截得的弦长为_圆心为(2,1),半径r2.圆心到直线的距离d,所以弦长为22.5(2016全国卷)设直线yx2a与圆C:x2y22ay20相交于A,B两点,若|AB|2,则圆C的面积为_4圆C:x2y

4、22ay20化为标准方程是C:x2(ya)2a22,所以圆心C(0,a),半径r.|AB|2,点C到直线yx2a即xy2a0的距离d,由勾股定理得22a22,解得a22,所以r2,所以圆C的面积为224.直线与圆的位置关系(1)(2017豫南九校联考)直线l:mxy1m0与圆C:x2(y1)25的位置关系是() 【导学号:31222298】A相交B相切C相离D不确定(2)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为_(1)A(2)x2y50(1)法一:圆心(0,1)到直线l的距离d10)截直线xy0所得线段的长度是2,则圆M与圆N:(x1)2(y1)21的位置关系是()

5、A内切B相交C外切D相离B法一:由得两交点为(0,0),(a,a)圆M截直线所得线段长度为2,2.又a0,a2.圆M的方程为x2y24y0,即x2(y2)24,圆心M(0,2),半径r12.又圆N:(x1)2(y1)21,圆心N(1,1),半径r21,|MN|.r1r21,r1r23,1|MN|0)x2(ya)2a2(a0),M(0,a),r1a.圆M截直线xy0所得线段的长度为2,圆心M到直线xy0的距离d,解得a2.以下同法一规律方法1.圆与圆的位置关系取决于圆心距与两个半径的和与差的大小关系2若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到3若两圆相交,则两

6、圆的连心线垂直平分公共弦变式训练2若O:x2y25与O1:(xm)2y220(mR)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是_4由题意O1与O在A处的切线互相垂直,则两切线分别过另一圆的圆心,O1AOA.又|OA|,|O1A|2,|OO1|5.又A,B关于OO1对称,AB为RtOAO1斜边上高的2倍又OAO1AOO1AC,得AC2.AB4.直线与圆的综合问题(2016江苏高考改编)如图841,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2y212x14y600及其上一点A(2,4)(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x6上,求圆N的标准方程;(2)

7、设平行于OA的直线l与圆M相交于B,C两点,且BCOA,求直线l的方程图841解圆M的标准方程为(x6)2(y7)225,所以圆心M(6,7),半径为5.1分(1)由圆心N在直线x6上,可设N(6,y0)因为圆N与x轴相切,与圆M外切,所以0y01,圆心到直线的距离d1,故直线与圆相交2(2017山西太原模拟)若圆C1:x2y21与圆C2:x2y26x8ym0外切,则m()A21B19C9D11C圆C1的圆心为C1(0,0),半径r11,因为圆C2的方程可化为(x3)2(y4)225m,所以圆C2的圆心为C2(3,4),半径r2(m0)相交于A,B两点,且AOB120(O为坐标原点),则r_.

8、2如图,过点O作ODAB于点D,则|OD|1.AOB120,OAOB,OBD30,|OB|2|OD|2,即r2.8(2017安徽十校联考)已知圆C:(x2)2y24,直线l:kxy2k0(kR),若直线l与圆C恒有公共点,则实数k的最小值是_圆心C(2,0),半径r2.又圆C与直线l恒有公共点所以圆心C(2,0)到直线l的距离dr.因此2,解得k.所以实数k的最小值为.三、解答题9已知点A(1,a),圆x2y24.(1)若过点A的圆的切线只有一条,求a的值及切线方程;(2)若过点A且在两坐标轴上截距相等的直线被圆截得的弦长为2,求a的值解(1)由于过点A的圆的切线只有一条,则点A在圆上,故12

9、a24,a.2分当a时,A(1,),易知所求切线方程为xy40;当a时,A(1,),易知所求切线方程为xy40.5分(2)设过点A的直线方程为xyb,则1ab,即ab1,8分又圆心(0,0)到直线xyb的距离d,224,则b.因此ab11.12分10(2017唐山模拟)已知定点M(0,2),N(2,0),直线l:kxy2k20(k为常数)(1)若点M,N到直线l的距离相等,求实数k的值;(2)对于l上任意一点P,MPN恒为锐角,求实数k的取值范围解(1)点M,N到直线l的距离相等,lMN或l过MN的中点M(0,2),N(2,0),直线MN的斜率kMN1,MN的中点坐标为C(1,1).3分又直线

10、l:kxy2k20过定点D(2,2),当lMN时,kkMN1;当l过MN的中点时,kkCD.综上可知,k的值为1或.6分(2)对于l上任意一点P,MPN恒为锐角,l与以MN为直径的圆相离,即圆心(1,1)到直线l的距离大于半径,10分d,解得k1.12分B组能力提升(建议用时:15分钟)1已知直线l:kxy20(kR)是圆C:x2y26x2y90的对称轴,过点A(0,k)作圆C的一条切线,切点为B,则线段AB的长为()A2B2C3D2D由圆C:x2y26x2y90得(x3)2(y1)21,则C(3,1)依题意,圆C的圆心(3,1)在直线kxy20上,所以3k120,解得k1,则点A(0,1),

11、所以|AC|,故|AB|2.2(2017济南质检)过点P(1,)作圆x2y21的两条切线,切点分别为A,B,则_.如图所示,可知OAAP,OBBP,OP2.又OAOB1,可以求得APBP,APB60.故cos 60.3已知圆C的方程为x2(y4)24,点O是坐标原点,直线l:ykx与圆C交于M,N两点(1)求k的取值范围;(2)直线l能否将圆C分割成弧长的比为的两段弧?若能,求出直线l的方程;若不能,请说明理由 【导学号:3122302】解(1)将ykx代入圆C的方程x2(y4)24.得(1k2)x28kx120.2分直线l与圆C交于M,N两点,(8k)2412(1k2)0,得k23,(*)k的取值范围是(,)(,).5分(2)假设直线l将圆C分割成弧长的比为的两段弧,则劣弧所对的圆心角MCN90,由圆C:x2(y4)24知圆心C(0,4),半径r2.8分在RtMCN中,可求弦心距drsin 45,故圆心C(0,4)到直线kxy0的距离,1k28,k,经验证k满足不等式(*),10分故l的方程为yx.因此,存在满足条件的直线l,其方程为yx.12分

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服