1、第三讲 函数与不等式问题的解题技巧【命题趋向】全国高考数学科?考试大纲?为走向高考的莘莘学子指明了复习备考的方向考纲是考试法典,是命题的依据,是备考的总纲科学备考的首要任务,就是要认真学习、研究考纲对照2007年的考纲和高考函数试题有这样几个特点:1通过选择题和填空题,全面考查函数的根本概念,性质和图象2在解答题的考查中,与函数有关的试题常常是以综合题的形式出现3从数学具有高度抽象性的特点出发,没有无视对抽象函数的考查4一些省市对函数应用题的考查是与导数的应用结合起来考查的5涌现了一些函数新题型6函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程
2、思想作指导函数类试题在试题中所占分值一般为22-35分而2007年的不等式试题那么有这样几个特点:1在选择题中会继续考查比拟大小,可能与函数、方程、三角等知识结合出题.2在选择题与填空题中注意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.3解题中注意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.分值在27-32分之间,一般为2个选择题,1个填空题,1个解答题可以预测在2021年的高考试题中,会有一些简单求函数的反函数,与导数结合的函数单调性函数极值函数最值问题;选择题与填空题中会出现一些与函数、方程、三角等知识结合的不等式问题,在解答题中会出现一些
3、不等式的解法以及建立不等式求参数的取值范围,和求最大值和最小值的应用题特别是不等式与函数、方程、数列、应用题、解几的综合题,这些题目会突出渗透数学思想和方法,值得注意。【考点透视】1了解映射的概念,理解函数的概念2了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程3了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数4理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质5理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质6能够运用函数的性质、指数函数和对数函数的性质解决
4、某些简单的实际问题7在熟练掌握一元一次不等式(组)、一元二次不等式的解法根底上,掌握其它的一些简单不等式的解法通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力8掌握解不等式的根本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式9通过复习不等式的性质及常用的证明方法(比拟法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题10通过证明不等式的过程,培养自觉运用数形结合、函数等根本数学思想方法证明不等式的能力11能较灵活的应用不等式的根本知识、根本方法,解决有关不等式的问题 12
5、通过不等式的根本知识、根本方法在代数、三角函数、数列、复数、立体几何、解析几何等各局部知识中的应用,深化数学知识间的融汇贯穿,从而提高分析问题解决问题的能力在应用不等式的根本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识 【例题解析】1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.例12007年广东卷理函数的定义域为M,g(x)=的定义域为N,那么MN= A B C D命题意图: 此题主要考查含有分式、无理式和对数的函数的定义域的求法.解:函数的定义域M= g(x)=的定义
6、域N=MN=应选C例2. ( 2006年湖南卷函数的定义域是( )A(3,+) B3, +) C(4, +) D4, +)命题意图: 此题主要考查含有无理式和对数的函数的定义域的求法.解:由,应选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例32006年安徽卷函数 的反函数是 A B C D命题意图: 此题主要考查有关分段函数的反函数的求法.应选C.例42007年湖北卷理函数的反函数是,那么 ; 命题意图: 此题主要考查反函数的求法及待定系数法等知识.解:与比拟得6,故填3.复合函数问题 复合函数问题,是新课程、新高考的重点.
7、此类题目往往分为两类:一是结合函数解析式的求法来求复合函数的值.二是应用函数定义域求复合函数的定义域.例52007年北京卷文对于函数,判断如下两个命题的真假:命题甲:是偶函数;命题乙:在上是减函数,在上是增函数;能使命题甲、乙均为真的所有函数的序号是命题意图: 此题主要考查利用复合函数和函数单调性等知识解决问题的能力.解:是偶函数,又函数开口向上且在上是减函数,在上是增函数故能使命题甲、乙均为真的函数仅有应选例62006年安徽卷函数对于任意实数满足条件,假设那么_.命题意图: 此题主要考查代数式恒等变形和求复合函数的值的能力.解:由,得,所以,那么.4.函数的单调性、奇偶性和周期性函数的单调性
8、、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例72006年全国卷 函数,假设为奇函数,那么_.命题意图: 此题主要考查函数的解析式的求解以及函数的奇偶性应用.常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即应填.巧妙解法:因为f(x)为奇函数,所以f(0)=0,即应填.点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例82007年全国卷理I,是定义在上的函数,那么“,均为偶函数是“为偶函数的A充要条件B充分而不必要的条件C必要而不充分的条件
9、D既不充分也不必要的条件命题意图: 此题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.解 先证充分性:因为,均为偶函数,所以,有,所以 为偶函数反过来,假设为偶函数,不一定是偶函数如,应选B.方法二:可以选取两个特殊函数进行验证应选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可同时,对于抽象函数,有时候可以选取特殊函数进行验证5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能
10、利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例9(2006年山东卷)函数y=1+ax(0a1)的反函数的图象大致是 ( ) A B C D命题意图: 此题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识. 解:y=1+ax(0a0,b0,且2a+b=1,那么S=2-4a2-b2的最大值是 A B、 C、 D、6不等式m2(cos25)m4sin20恒成立,那么实数m的取值范围是 A.0m4 B.1m4 Cm4或x0 D.m1或m0二.填空题7.设f(x)=x21(x2),那么f1(4)=_.8.f(x)=3x2,那么f1(3x2)=_.9.fx是奇
11、函数,当x0,1时,fxlg,那么当x1,0时, fx的表达式是_10. 记S=,那么S与1的大小关系是 .11.当时,函数的最小值是_.12.实数满足,那么的取值范围是_.三.解答题13. 设函数fx=log2x+1,当点x,y在y=fx的反函数图象上运动时,对应的点在y=gx的图象上.(1)求gx的表达式;(2)当gxf1x0时,求ux=gxf1x的最小值.14. 在某产品的制造过程中,次品率p依赖于日产量x, 其中x为正整数,又该厂每生产一正品可赢利A元,但每生产出一件次品就要损失元.(1) 将该厂的日赢利额T元表示为日产量x个的函数,并指出这个函数的定义域;(2)为了获得最大盈利,该厂
12、的日产量应定为多少?15 的单调区间;2假设16某人上午7时乘摩托艇以匀速V千米/小时4V20从A港出发前往50千米处的B 港,然后乘汽车以匀速W千米/小时30W100自B港向300千米处的C市驶去,在同一天的16时至21时到达C市, 设汽车、摩托艇所需的时间分别是x小时、y小时,假设所需经费元,那么V、W分别为多少时,所需经费最少?并求出这时所花的经费.【参考答案】一.1.A 提示:,又. 2.D 提示:函数y=x2+2x+1的图象开口向下,对称轴x=1.3.C 提示:由于f(x)是定义在A上的减函数,且f(x)0,所以其2f(x), ,和都是增函数.4.D 5.A 6.C二.7. .8.x
13、.9. 提示:当x1,0时,x0,1,fxfxlglg1x10. 11. 4 ; 12. 三.13. (1)易求.(2)由gxf1x0得:.故即.14. 1易知.2求T的最大值是个难点.须变换:易知当且仅当89.4时,最大.但是,两者的最大值一定是的最大值吗?这是此题的第二个难点.因此,必须证明函数在0,上是增函数,而在,100上是减函数.15. 解:1 对 已 知 函 数 进 行 降 次 分 项 变 形 , 得 ,2首先证明任意事实上,.而 16.解:题中了字母, 只需要建立不等式和函数模型进行求解.由于又那么z最大时P最小.作出可行域,可知过点10,4时, z有最大值38,P有最小值93,这时V=12.5,W=30.视这是整体思维的具体表达, 当中的换元法是数学解题的常用方法
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100