ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:1.48MB ,
资源ID:2347610      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2347610.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于人工智能强化学习算法的素质素养预测机制研究.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于人工智能强化学习算法的素质素养预测机制研究.pdf

1、SOFTWARE软 件2023第 44 卷 第 9 期2023 年Vol.44,No.9作者简介:靳恒清(1974),男,甘肃平凉人,硕士研究生,副教授,研究方向:数据仓库与数据挖掘。基于人工智能强化学习算法的素质素养预测机制研究靳恒清(甘肃农业职业技术学院,甘肃兰州 730000)摘要:传统的学生素质素养评估方法往往基于专家经验或标准,难以全面、客观地评估学生的素质素养。基于人工智能强化学习算法的学生素质素养预测机制是一种数据驱动的方法,它利用大量的学生数据进行模型构建和预测,经过不断地优化算法和模型,提高模型的准确性和泛化能力,同时结合学生素质素养指标实现个性化的综合性分析,从而全面地评估

2、与预测学生的素质素养能力。此外,该预测机制能够根据学生的表现和反馈信息,不断调整和优化学生的能力模型,提高学生素质素养评价的先进性,还能够通过建模实现对学生学习行为的精细化管理。最后,将基于强化学习的学生素质素养预测机制应用到实际教学场景中,并对其效果进行评估和优化,推广其应用领域,同时将其转换为科研成果。关键词:人工智能;强化学习算法;素质素养中图分类号:TP18 文献标识码:A DOI:10.3969/j.issn.1003-6970.2023.09.029本文著录格式:靳恒清.基于人工智能强化学习算法的素质素养预测机制研究J.软件,2023,44(09):116-119Research

3、on Quality and Literacy Prediction Mechanism Based on Artificial Intelligence Reinforcement Learning AlgorithmJIN Hengqing(Gansu Vocational College of Agriculture,Lanzhou Gansu 730000)【Abstract】:Traditional methods for evaluating students quality and literacy are often based on expert experience or

4、standards,making it difficult to comprehensively and objectively evaluate students quality and literacy.The mechanism for predicting students quality and literacy based on artificial intelligence reinforcement learning algorithms is a data-driven approach,it utilizes a large amount of student data f

5、or model construction and prediction,continuously optimizing algorithms and models,improve the accuracy and generalization ability of the model,simultaneously combining student quality and literacy indicators to achieve personalized comprehensive analysis,to comprehensively evaluate and predict stud

6、ents quality and literacy abilities.In addition,the prediction mechanism can be based on students performance and feedback information,continuously adjusting and optimizing students ability models,improve the progressiveness of students quality assessment,it is also possible to achieve refined manag

7、ement of students learning behavior through modeling.Finally,the prediction mechanism for students quality and literacy based on reinforcement learning will be applied to practical teaching scenarios,and evaluate and optimize its effectiveness,promote its application areas,simultaneously convert it

8、into scientific research achievements.【Key words】:artificial intelligence;reinforcement learning algorithm;quality and literacy设计研究与应用1 科学依据和意义1.1 应用前景(1)为学生素质素养提供动态评估与监测。基于强化学习的素质素养预测机制可以帮助学校和教育机构更好地了解学生的学习状况和发展趋势,从而制定更有效的教育策略和培养方案。(2)为学生学习支持和指导提供理论依据。基于强化学习的素质素养预测机制可以针对每个学生的特点和需求进行个性化教育,为学生提供更好的学习

9、支持和指导,帮助学生更好地发挥自己的潜力。(3)为教师培训与教育改革提供参考思路。基于强化学习的素质素养预测机制可以帮助教师更好地了解学生的学习需求和表现,提高教师的教育水平和教学质117靳恒清:基于人工智能强化学习算法的素质素养预测机制研究量,同时也为教育改革提供重要的参考。1.2 学术思想基于强化学习的学生素质素养预测机制的学术思想是基于强化学习的算法和原理,将其应用于学生素质素养的评估和预测,从而构建学生能力模型,提高学生的素质素养。强化学习是一种基于试错的学习方法,它通过智能体与环境的交互,使智能体逐渐学会如何采取最优的动作以最大化累积奖励1。在学生素质素养的评估和预测中,可以将学生视

10、为智能体,将学生与教育环境视为环境,通过智能体与环境的交互,构建学生的能力模型,并对学生的未来表现进行预测,从而提高学生的素质素养。1.3 特色与创新基于强化学习的学生素质素养预测机制相较于传统的学生素质素养评估方法,具有以下特色与创新之处:(1)基于数据驱动的方法。传统的学生素质素养评估方法往往基于专家经验或标准,难以全面、客观地评估学生的素质素养。而基于强化学习的学生素质素养预测机制可以利用大量的学生数据,通过数据驱动的方法建立学生的能力模型,更加客观和准确地评估和预测学生的素质素养。(2)涵盖多个方面的评价。学生的素质素养包括学习能力、认知能力、社交能力、情感能力等多个方面,而这些方面往

11、往相互影响、相互作用,难以分开评估。基于强化学习的学生素质素养预测机制可以将这些方面综合起来考虑,建立更加全面、细致的学生能力模型。(3)应用人工智能的技术。强化学习算法具有良好的适应性和泛化能力,能够自动学习最优策略,不断优化学生的能力模型。这一特点使得基于强化学习的学生素质素养预测机制更加灵活、高效,能够适应不同的学生和环境。(4)实现指标的动态调节。基于强化学习实验法的学生素质素养预测机制不仅能够评估和预测学生的素质素养,还能够根据学生的表现和反馈信息,不断调整和优化学生的能力模型,提高学生素质素养评价的先进性。综上所述,基于强化学习的学生素质素养预测机制具有较强的科学性、实用性和创新性

12、,是一种有前景的研究方向。2 研究内容和预期成果2.1 研究内容基于强化学习的学生素质素养预测机制的研究内容主要包括以下几个方面:(1)数据收集与信息处理。采集大量的学生数据,包括对学生教学活动的过程、评价、反馈等信息,并对数据进行预处理和清洗,保证数据的准确性和可用性。(2)特征提取与学生建模。根据个性化的学生数据,提取有意义的特征,并将学生建模成强化学习的智能体,建立学生的能力模型2。(3)策略制定与决策优化。建立学生能力模型,制定相应的策略,实现对学生的指导和管理,并通过强化学习算法不断优化策略,提高学生的素质素养。(4)算法实现与性能评估。将研究内容实现成可操作的算法,并通过对比实验和

13、性能评估来验证算法的有效性和优越性。算法将基于执行器、评价器的深度策略梯度算法和深度确定性策略梯度算法。1)基于执行器评价器的深度策略梯度算法。策略梯度算法直接对智能体的策略进行优化,它需要收集一系列完整的序列数据来更新策略。在 DRL 中,对序列数据进行收集往往很困难,并且以序列的方式对策略进行更新会引入很大的方差。一种可行的方案是将传统强化学习中的 AC 结构应用到 DRL 中。AC 结构主要包括执行器和评价器两部分,其中执行器基于策略梯度算法更新动作,评价器则基于值函数法对动作进行评价。AC 结构的优点是将策略梯度中的序列更新变为单步更新,不用等序列结束后再对策略进行评估和改进,这样可以

14、减少数据收集的难度,同时可以减小策略梯度算法的方差。对于值函数部分,也可以用优势函数来代替。优势函数可以表示为如式(1)所示:)(),(ttttsVasQA=(1)或如式(2)所示:)()(1ttttsVsVrA+=+(2)使用优势函数代替 Q 函数,可以提高“好”动作出现的概率。使用优势函数可以进一步的减小算法的方差,基于优势函数的 AC 结构被称为优势 AC(Advantage AC,A2C)算法。A2C 的基本结构如图 1 所示。状态值函数网络优势函数环境Scriticr);(sV策略网络动作选择Saactor);,(as)()(1ttssVrA+=+图 1 A2C 的基本结构Fig.1

15、 A2C basic structure2)深度确定性策略梯度算法。策略梯度算法一般采118软 件第 44 卷 第 9 期SOFTWARE用随机性策略进行表示,表示为(|)|:a sP a s=。然而随机性策略梯度算法需要对动作进行采样,当动作空间较大时,采样的计算量也会随之增加。为此,提出确定性策略梯度(Deterministic Policy Gradient,DPG)算法,采用确定性的方式对动作进行采样。确定性策略表示为as=)(,即在当前状态下采取确定的动作。为进一步提升算法的通用性,将 DQN 和 DPG 算法进行结合,提出了 DDPG 算法。DDPG 分别将和Q作为神经网络的参数来

16、表示确定性策略)|(sa=和值函数)|,(QasQ。其中,策略网络被用来更新策略,相当于AC 结构中的执行器;值函数网络被用来对动作进行评价,并提供梯度信息,相当于 AC 结构中的评价器。策略网络的更新过程表示为如式(3)所示:()()()|,|,stttqssssssQEV=()()()|,|,stttqssssssQEV=(3)+=+t1t值函数网络的更新过程如式(4)所示:()()qttQttttsQssQ|,|,(11+=+(4)()QtttQQtQtsQQQ|,1+=+其中,a和Qa表示学习率,和Q表示目标网络的参数,更新方法如式(5)所示:()1QQQ+()1+(5)其中,表示更新

17、率,且值远小于 1。同时,DDPG 算法还加入噪声来增加探索,进一步提升算法的性能。DDPG 算法在一系列连续动作空间的任务中都能表现稳定。相对于 DQN 来说,DDPG 在博弈中能够取得更高的效率,训练时间更少。(5)算法应用和技术推广。将基于强化学习的学生素质素养预测机制应用到实际教学场景中,并对其效果进行评估和优化,推广其应用领域。综上所述,基于强化学习的学生素质素养预测机制的研究内容涉及多个方面,需要结合实际教学场景,综合运用多种技术手段,实现对学生素质素养的全面、准确、有效的预测和提高。2.2 研究目标基于强化学习的学生素质素养预测机制的研究目标主要包括以下几个方面:(1)实现对学生

18、素质素养的准确预测。通过对学生数据的收集、处理和分析,建立学生的能力模型,并基于强化学习算法实现对学生素质素养的准确预测,提高教学的精准度。(2)实现对学生素质素养的有效提升。通过制定针对不同学生的个性化学习策略,基于强化学习算法实现对学生素质素养的有效提升,提高学生的综合素质和能力。(3)实现对学生学习行为的精细管理。通过基于强化学习算法的学生建模和策略制定,实现对学生学习行为的精细化管理,为教学管理提供有效的决策支持。(4)实现对人工智能技术推广与应用。将基于强化学习的学生素质素养预测机制推广应用到不同教学场景和不同学科领域,提高教育教学的效率和质量。综上所述,基于强化学习的学生素质素养预

19、测机制的研究目标旨在提高学生素质素养的预测和提升效果,为教育教学提供有效的决策支持和指导,促进学生全面、健康、快乐地成长。2.3 解决的问题基于强化学习的学生素质素养预测机制旨在解决以下几个方面的问题:(1)实现个性化分析。传统评价方法缺乏评价指标的统一标准,在收集大量无用数据的同时缺乏准确率的评价体系,而基于强化学习的学生素质素养预测机制能够从学生的行为、表现和反馈等多维度数据中提取到有用的信息,通过建立学生的能力模型,实现对学生素质素养的准确预测。(2)提升评价准确性。基于强化学习算法的特点,针对实际应用场景进行优化,通过强化学习的学生素质素养预测机制能够提高预测和提升效果。(3)学习策略

20、的优化。根据对学生教学活动中过程、评价、反馈等信息的驱动,通过算法得出各个学生的能力和特点的相关结论,从而制定个性化的学习策略,实现对学生素质素养的有效提升。(4)学生管理精细化。通过强化学习算法对学生的行为进行精细化管理,及时发现和解决学生存在的问题,提高学生学习效果和素质素养。(5)算法的可解释性。依据强化学习算法的可解释性和透明性,让教育从业者和学生能够理解和接受算法的预测和提升策略,从而增强算法的可信度和可接受度。综上所述,基于强化学习的学生素质素养预测机制需要解决数据处理和分析、算法选择和优化、个性化学习策略制定、行为精细化管理以及算法可解释性和透明性等关键科学问题,才能实现对学生素

21、质素养的有效预测和提升。3 拟采取的研究方法和技术路线3.1 研究方法基于强化学习的学生素质素养预测机制研究的方法119靳恒清:基于人工智能强化学习算法的素质素养预测机制研究主要包括以下几个方面:(1)数据采集和处理。首先需要收集和处理与学生素质素养相关的数据,例如,学生的学习行为数据、活动数据、考试成绩、家庭背景等,将数据进行预处理、清洗,通过特征提取的转换后得到可以用于强化学习的数据。(2)强化学习算法的选择。分析学生素质素养预测需求和个性化的学生数据自身特点,选择适合的具体强化学习算法,例如,Q-learning、Policy Gradient 等。(3)建模与训练。根据收集到的数据,利

22、用强化学习算法对学生进行建模和训练。通过参数的初始化完成模型的搭建并以数据驱动模型的训练,最终学习到学生的能力和特点,从而获得用于预测学生素质素养的模型3。(4)模型评估与优化。针对当前已有的学生素质素养预测模型,确定模型与参数的合理性并对模型的性能进行评估和优化,包括模型的准确性、稳定性和泛化能力等方面。(5)模型应用与成果转换。根据模型预测结论,实现个性化的学习策略推荐和学生行为管理系统等应用,帮助学生提高学习效果和素质素养,也为教育管理部门提供决策支持,最终依据模型应用效果转换为软著与专利等科研成果。3.2 技术路线基于强化学习的学生素质素养预测机制的技术路线有如下几个方面:(1)数据采

23、集和预处理。包括从多个渠道获取学生学习行为数据、学生活动信息、学生个人信息、教育背景等相关数据,并进行数据预处理,包括数据清洗、数据统计、特征提取等步骤,最终转换为能够用于模型训练的数据集。(2)建立强化学习模型。根据采集到的数据,建立基于强化学习的学生素质素养预测模型,包括环境建模、状态表示、动作定义、奖励设计等步骤。选择适合问题的强化学习算法进行建模,如 Q-learning、Deep Q Network 等。(3)模型训练与优化。利用采集到的数据对模型进行训练,并对模型进行优化和调参,以提高模型的准确性和泛化能力。同时,需要对模型的稳定性进行评估并分析模型的可解释性。(4)模型评估和应用

24、。对训练好的模型进行评估,包括准确度、召回率、F1 值等指标的评估。在评估过程中,需要使用独立数据集进行测试,并采用交叉验证等技术确保模型的泛化能力。最后将模型应用到实际场景中,帮助学生提高学习效果和素质素养。(5)模型迭代和更新。随着学生个体差异的变化以及新的数据采集,模型需要进行迭代和更新。在模型更新的过程中,需要采用增量学习等技术,使模型能够及时更新,以适应新的数据和环境。3.3 研究计划基于强化学习的学生素质素养预测机制的研究计划如表 1 所示。整个研究计划将采用敏捷开发的方式,每个阶段的成果将经过实验验证和实际应用测试。4 结语综上所述,基于强化学习的学生素质素养预测机制的研究需要建

25、立一个高效的数据采集系统和完备的数据库、强化的学习算法平台、高性能的计算机和 GPU 等硬件设备、学科专家和教育专家的支持,同时还需充足的资金和时间支持。参考文献1 万里鹏,兰旭光,张翰博,等.深度强化学习理论及其应用综述J.模式识别与人工智能,2019,32(1):67-81.2 刘建伟,高峰,罗雄麟.基于值函数和策略梯度的深度强化学习综述J.计算机学报,2019,42(6):1406-1438.3 孙长银,穆朝絮.多智能体深度强化学习的若干关键科学问题J.自动化学报,2020,46(7):1301-1312.表 1 强化学习的学生素质素养预测机制的研究计划Tab.1 A research

26、plan on the prediction mechanism of students quality and accomplishment in intensive learning阶段内容详情一阶段问题分析和数据采集主要对学生素质素养预测问题进行分析,并从多个渠道收集学生学习行为数据、学生活动数据、学生个人信息、教育背景等相关数据二阶段模型建立和训练基于采集到的数据,建立基于强化学习的学生素质素养预测模型,选择适合问题的强化学习算法进行建模,并对模型进行训练和优化三阶段模型评估和应用对训练好的模型进行评估,包括 Accuracy、Recall、F1 值等指标的评估,并将模型应用到实际场景中,帮助学生提高学习效果和素质素养四阶段模型迭代和更新随着学生个体差异的变化以及新的数据采集,对模型进行迭代和更新。在模型更新的过程中,需要采用增量学习等技术,使模型能够及时更新,以适应新的数据和环境五阶段成果发布和推广发布研究成果,并将其推广到更广泛的教育领域,为学生的学习和发展提供更好的支持和帮助

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服