ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:6.67MB ,
资源ID:2343196      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2343196.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于无人机高光谱遥感的淇澳岛红树林冠层叶片功能性状反演.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于无人机高光谱遥感的淇澳岛红树林冠层叶片功能性状反演.pdf

1、第 43 卷 第 11 期2023 年 11 月Vol.43,No.11Nov.,2023热带地理TROPICAL GEOGRAPHY基于无人机高光谱遥感的淇澳岛红树林冠层叶片功能性状反演王萌1,孙争争2,何志东1,王智慧3,耿守保3,赵新锋1,杨龙3,孙中宇3(1.广东省珠海生态环境监测站,广东 珠海 519070;2.广东珠海淇澳-担杆岛省级自然保护区管理处,广东 珠海 519000;3.广东省地理空间信息技术与应用公共实验室/广东省科学院广州地理研究所,广州 510070)摘要:以珠海淇澳岛红树林为研究对象,基于无人机高光谱数据,采用偏最小二乘回归方法和归一化植被指数相结合(PLSR+N

2、DVI)以及偏最小二乘回归方法与连续小波变换(PLSR+CWT)相结合的2种无人机高光谱数据处理方法,反演了研究区内红树林的10种冠层叶片功能性状。结果表明,PLSR+NDVI的方法更适用于红树林冠层叶片比叶重LMA、单位质量磷含量Pmass和单位面积氮含量Narea的反演,PLSR+CWT的方法更适用于氮磷比N/P、叶绿素含量Cab和类胡萝卜素含量Cxc的反演,2种方法用于反演单位质量氮含量Nmass、单位质量钾含量Kmass、单位面积磷含量Parea和单位面积钾含量Karea的结果均不理想(R20.3)。采用所建立的较优方法对研究区红树林冠层叶片的LMA、Pmass、Narea、N/P、C

3、ab和Cxc的含量进行反演和空间分布制图,得到的功能性状空间分布格局与冠层结构及物种的空间分布格局密切相关。将不同生活型的红树林物种分开构建高光谱功能性状反演模型,有望进一步提升模型的反演精度。未来可针对每一个红树林物种构建特定的功能性状反演模型,同时结合可见光影像的物种识别结果,以提升红树林冠层叶片功能性状的反演精度。关键词:叶片功能性状;无人机高光谱遥感;功能性状制图;PLSR;红树林;淇澳岛中图分类号:TP751;S451 文献标志码:A 文章编号:1001-5221(2023)11-2146-09DOI:10.13284/ki.rddl.003766 开放科学(资源服务)标识码(OSI

4、D):叶片功能性状及其在冠层尺度所展现出的功能特性是陆地生态系统中植物生理生态过程和生物地球化学循环过程的主要决定因素(Hedin,2004)。开展叶片功能性状的定量化研究,有助于理解植物对环境的适应性进化策略以及生物多样性与生态系统功能间的内在关联。在高光谱遥感技术出现前,有关叶片功能性状的研究多集中在叶片尺度,地面调查是其主要的数据获取方式。目前系统性的野外调查已累积了丰富的植物叶片功能性状数据,但野外调查数据获取过程耗时耗力,且存在一定局限性,如数据的时空覆盖度不均衡,涉及的物种多为群落优势物种,难以在群落和生态系统尺度应用,部分关键生态系统内的观测数据严重不足等(严正兵 等,2022)

5、。高光谱遥感,特别是成像光谱仪技术的成熟,为冠层尺度叶片功能性状的估算提供了新的方法(Ustin et al.,2004;孙中宇 等,2017)。随着成像光谱仪技术的发展,以无人机为载体的低空高光谱遥感将高光谱数据的空间分辨率由10 m数量级提高到亚米级甚至厘米级,极大地提升了高光谱遥感对冠层叶片功能性状的反演能力,也收稿日期:2023-07-27;修回日期:2023-09-05基金项目:广东省科学院建设国内一流研究机构行动专项资金项目(2020GDASYL-20200102001,2020GDASYL-0104002);广东省林业改革发展资金项目作者简介:王萌(1989),男,河南周口人,学

6、士,主要研究方向为生态环境监测,(E-mail);通信作者:孙中宇(1986),男,吉林榆树人,副研究员,博士,主要研究方向为恢复生态学和无人机遥感生态应用,(E-mail)。https:/www.try-db.org/Try Web/Home.php王萌,孙争争,何志东,王智慧,耿守保,赵新锋,杨龙,孙中宇.2023.基于无人机高光谱遥感的淇澳岛红树林冠层叶片功能性状反演.热带地理,43(11):2146-2154.Wang Meng,Sun Zhengzheng,He Zhidong,Wang Zhihui,Geng Shoubao,Zhao Xinfeng,Yang Long,and S

7、un Zhongyu.2023.Inversion of Mangrove Canopy Leaf Functional Traits on the Qiao Island Based on UAV Hyperspectral Remote Sensing.Tropical Geography,43(11):2146-2154.王萌等:基于无人机高光谱遥感的淇澳岛红树林冠层叶片功能性状反演11 期对叶片功能性状的反演方法提出新的挑战(Peterson et al.,1988;Floreano et al.,2015;Sun et al.,2021)。将叶片功能性状推绎到冠层尺度主要依赖物理模型

8、和经验模型。物理模型考虑叶片生化组分、叶片结构和冠层结构等因子对太阳辐射传输过程的影响,并将这些因子的影响定量化最终用于计算冠层尺度的叶片功能性状。而经验模型则借助统计学方法构建冠层光谱数据与冠层叶片功能性状间的回归关系。早期用于冠层叶片功能性状遥感研究的成像高光谱数据均来自于高空遥感(Vane et al.,1988),空间分辨率普遍不高,如AVIRIS的20 m空间分辨率数据,每一个混合像元所对应的地面范围为20 m20 m。用该数据建立反演模型时,通常将单个像元或若干个像元的光谱反射率组成的矩阵与对应地面范围内所有物种叶片的某一功能性状的平均值作为配对数据建立回归方程。由于PLSR比传统

9、的多元线性回归方法更适合处理多重共线性和过采样数据,因此被广泛用于叶片功能性状的高光谱反演。但由混合像元以及混合采样引起的系统误差始终难以避免,导致反演模型的精度和不确定性受到较大影响。随着无人机低空遥感技术的发展,目前成像高光谱数据的空间分辨率已达到亚米级甚至厘米级,影像中的树冠甚至小枝可以被精细划分,很大程度上减少了混合像元对模型反演精度的影响。目前,国内外已开展了大量针对叶片功能性状的高光谱遥感反演研究,内容主要为叶片功能性状的高光谱反演原理(Vane et al.,1988)以及从叶片到冠层尺度的功能性状遥感反演方法(Asner et al.,2008)和冠层叶片功能性状制图等(Gar

10、a et al.,2019;Liu et al.,2023),但研究对象多为草原和森林等陆地生态系统(Wang et al.,2020;Zhao et al.,2021),针对红树林生态系统的研究相对较少(Kuenzer et al.,2011;Wang et al.,2019)。红树林是一类重要的滨海湿地生态系统,在碳固存、防浪固堤及维持海岸带生物多样性方面发挥重要作用。红树林林冠尺度的功能性状对于红树林固碳能力评估、生物多样性监测、群落健康评价以及精细管理具有重要意义。由于红树林所在的潮间带受周期性潮水浸没,滩涂泥泞,外加林深树密,一直难以开展大范围的地面调查和监测工作,导致红树林林冠尺度

11、上功能性状的研究严重缺失。开展红树林冠层尺度叶片功能性状的高光谱定量遥感研究,有利于在群落尺度上理解红树林生态系统的结构、功能和生态学过程。因此,本文以珠海淇澳岛红树林生态系统为研究对象,探讨无人机高光谱遥感反演红树林冠层叶片功能性状的可行性和适用方法,通过对比选取精度较高的反演方法对研究区红树林冠层叶片功能性状空间分布进行制图,分析研究区红树林叶片功能性状的空间分布格局,以期为淇澳岛红树林的科学管理提供技术支持。1 研究方法 1.1研究地概述研究区(2225 40.8 N、11337 48.2 E)位于淇澳红树林自然保护区内(图1)。淇澳红树林自然保护区地处淇澳岛西北部,与中山、深圳、香港隔

12、海相望,属于湿地型的自然保护区,湿地总面积约5 103.77 hm2,其中红树林面积约500 hm2,主要保护对象为红树林生态系统和鸟类。20世纪80年代初互花米草入侵淇澳岛红树林群落并造成较大危害,1998年淇澳岛仅剩32 hm2的原生红树林。随后淇澳岛红树林自然保护区对红树林开展大面积修复,2013年其成林面积已达500 hm2,红树林植物种类由原来的8种增至28种(岳文 等,2023)。淇澳岛红树林中真红树植物为优势种,以引进种无瓣海桑(Sonneratia apetala)、海桑(Sonneratia caseolaris)和乡土种老鼠簕(Acanthus ilicifolius)、秋

13、茄(Kandelia candel)和卤蕨(Acrostichum aureum)为主,无瓣海桑群落以面积占比82.01%成为绝对优势群落,其他主要群落类型包括秋茄群落、卤蕨群落和老鼠簕群落,面积占比分别为5.01%、3.82%和 3.31%,其 中 真 红 树 群 落 占 总 面 积 的94.15%,半红树植物以海杧果(Cerbera manghas)、银 叶 树(Heritiera littoralis)和 水 黄 皮(Pongamia pinnata)为主,重要值相对较低(邱霓 等,2019)。以淇澳岛红树林自然保护区内的原生红树林群落为研究对象,选取400 m120 m范围作为核心研究

14、区域(图1-b),区域内主要分布以秋茄、桐花树(Aegiceras corniculatum)、老鼠簕、卤蕨和蒲苇(Cortaderia selloana)组成的原生红树林群落,群落周围另存一些人工种植的红树物种,如海滨猫尾木(Dolichandrone spathacea)、黄槿(Talipariti tiliaceum)、银叶树和海杧果等集群分布。214743 卷热带地理1.2无人机遥感数据的获取与拼接通过无人机携带可见光相机和高光谱成像仪(具体型号参数见表1)获取林冠影像数据。采用DJI GS pro地面站规划无人机飞行航线,设定航向重叠率 80%,旁向重叠率 80%,设定航高 100

15、m。可见光影像航线覆盖面积约1 000 m620 m,高光谱影像航线覆盖面积约400 m120 m。获取的影像采用 Agisoft Metashape Professional v1.8.4(Agisoft LLC,俄罗斯)软件进行拼接处理,经过排列图片、生成密集点云、生成网络、生成纹理等过程,获得研究地的三维点云、数字表面模型(DSM)、数字高程模型(DEM)和数字正射影像(DOM)。1.3叶片功能性状测量1.3.1叶片采集与功能性状测定使用高枝剪共采集47株个体的阳叶枝条,涵盖27个红树物种及伴生物种,具体为桐花树 3 株,白骨壤(Avicennia marina)3 株,黄槿 3 株,杨

16、叶肖槿(Thespesia populnea)3株,无瓣海桑 3株,木榄(Bruguiera gymnorhiza)3株,秋茄3株,海杧果2株,银叶树2株,鱼藤(Derris trifoliata)2株,蒲苇2株,海漆(Excoecaria agallocha)2株,老鼠簕2株,卤蕨1株,尖叶卤蕨(Acrostichum speciosum)1株,苦郎树(Volkameria inermis)1 株,厚藤(Ipomoea pes-caprae)1株,草海桐(Scaevola taccada)1株,桤果木(Conocarpus erectus)1 株,玉蕊(Barringtonia racemo

17、sa)1株,海滨猫尾木 1株,榄李(Lumnitzera racemosa)1 株,苦槛蓝(Pentacoelium bontioides)1株,海葡萄(Coccoloba uvifera)1株,木果楝(Xylocarpus granatum)1株,红海榄(Rhizophora stylosa)1 株,水椰(Nypa fruticans)1株。每个叶片样本包括2030个,获取后立即测量鲜叶重量,扫描叶面积,叶片打孔后放入液氮速冻。之后将叶片样本置于烘箱于65烘至恒重,称取干叶重量,用以计算比叶重LMA(干重/叶面积,g/m2)。干叶经过化学分析得到叶片养分含量Nmass、Pmass和Kmass

18、(mg/g),通过比叶重计算基于面积的含量Narea、Parea和Karea(g/m2),冷冻的叶片利用液氮捣碎,放入95%乙醇溶解,再利用紫外可见光分光光度计测量,根据Lichtenthaler(1987)的公式计算得到叶绿素Cab和类胡萝卜素含量Cxc(g/cm2)。aa)bb)图1研究区地理位置(a.可见光影像覆盖区域;b.高光谱影像覆盖区域)Fig.1Geographical location of the study area(a.RGB mosaic covered area;b.hyperspectral mosaic covered area)2148王萌等:基于无人机高光谱遥

19、感的淇澳岛红树林冠层叶片功能性状反演11 期1.3.2模型反演与精度验证在高光谱影像上确定采样植株,勾划树冠,提取每个树冠所有像元的光谱,利用近红外波段NIR0.15去除阴影像元,然后将所有像元的光谱取平均。去除噪声波段,仅采用480810 nm范围83个波段做后续反演。叶片性状 的 高 光 谱 反 演 采 用 偏 最 小 二 乘 回 归 方 法(PLSR)。PLSR是一种线性非参数模型,能将原始数据转换为少量数目的潜在因子,并考虑响应变量和预测变量的协方差(Wold et al.,2001)。PLSR已被广泛用于植被参数的遥感反演,并取得很高的反演精度(Singh et al.,2015;W

20、ang et al.,2020)。为了降低模拟的过拟合,采用交叉验证方法确定模型参数,也即潜在因子的个数(Chen et al.,2004)。建模前,为了增强叶片性状的光谱吸收特征,做2种光谱变换:1)计算所有波段组合的归一化植被指数NDVI:NDVI=(RiRj)/(Ri+Rj)(1)式中:Ri和 Rj为冠层反射率,i和 j的取值为 480810 nm任意的2个光谱波段;2)对光谱进行连续小波变换(CWT),小波母函数采用墨西哥帽小波(Mexican Hat),尺度因子取值为1,2,3,10。分别计算每个NDVI与叶片性状的相关性,选取相关 性 排 名 前 2%的 NDVI 作 为 PLSR

21、 模 型 输 入(PLSR+NDVI),共有自变量138个。另外,分别计算每个波长和尺度因子的小波变换系数与叶片性状的相关性,选取相关性排名前20%的连续小波变换系数作为 PLSR模型输入(PLSR+CWT),共有自变量166个。由于样本数量限制,采用留一交叉验证方法(leave-one-out validation),根据实测值和预测值计算决定系数R2,均方根误差RMSE,相对均方根误差NRMSE(=均方根误差/取值范围)和偏差BIAS等4个统计指标。所有模型构建和分析利用Python软件完成。1.3.3植物叶片功能性状空间分布制图对比2种光谱变换建模结果,选取精度较好的模型,用于处理整个区

22、域的高光谱影像,利用NDVI值0.60和近红外波段反射率0.20的条件,将非植被区域和阴影地区剔除,最终获得各个植物叶片功能性状的研究区分布。2 结果分析 2.1淇澳岛红树林叶片功能性状实测结果本研究共采集了47株个体的叶片进行叶片功能性状测定,共涉及27个红树及其伴生物种。用于功能性状测定的有效样本数为4447个不等(表2)。变异系数方面,Parea的变异系数最大,达到 0.54;Cab的变异系数最小,为0.27。2.2淇澳岛红树林冠层光谱特征及功能性状的无人机遥感反演结果淇澳岛红树林的冠层反射光谱在550 nm处存在一个5%左右的反射峰,红边位置位于680780 nm处,反射峰值约为30%

23、。光谱的变异性主要存在于530560和750900 nm,在750900 nm的变异性最表1 本研究采用的无人机遥感系统具体参数Table 1Specific parameters of UAV remote sensing system adopted in this study产品无人机飞行平台传感器影像处理系统型号DJI M600PRODJI MAVIC2 ENTERPRISED ADVANCEDRGB+ThermalS185组装服务器主要参数中国深圳市大疆创新科技有限公司生产。六旋翼飞行器,机身重量9.5 kg,最大起飞重量15.5 kg,最大水平飞行速度 65 km/h,悬停时间约3

24、8 min中国深圳市大疆创新科技有限公司生产。起飞重量909 g,最大起飞重量 1 100 g,带有差分GPS模块,最大水平飞行速度 72 km/h,最长飞行时间31 min可 见 光 相 机可 见 光 相 机:1/2 英 寸CMOS;有效像素 4800 万;镜头视角 84,等效焦距 24 mm,光圈f2.8,iso范围1001 600,数字变焦 32,最大照片尺寸8 0006 000 pix热成像相机热成像相机:图像大小640512 pix,测量波长范围814 m,图 像 温 度 范 围-10400,温度分辨率0.05画幅式、实时、高速成像光谱仪。重量470 g,光谱范围450950 nm,

25、采 样 间 隔 4 nm,光谱分辨率 8 nm,通道数125个,cube分辨率1 0001 000 pixIntel Xeon E5-2696 V3 CPU2,36 核 72 线程,英伟达 P6000 24G 独 立 显 卡,128g DDR4 Kingston 内存,250G SSD硬盘+16T机械硬盘。214943 卷热带地理大(图2)。采用PLSR+NDVI和PLSR+CWT对研究区红树林的叶片功能性状进行高光谱遥感反演,结果表明,2种方法分别适用于不同叶片功能性状的反演,具体为PLSR+NDVI的方法更适用于LMA、Pmass和Narea的反演,PLSR+CWT的方法更适用于N/P、C

26、ab和Cxc的反演。综合2种方法得到的结果,Cab和Cxc的反演效果最优,R2为0.44,Narea次之,R2为0.42(图3),Nmass、Kmass、Parea和Karea的反演结果不理想,R2皆小于0.3。2.3红树林冠层叶片功能性状的空间分布格局基于本研究得到的最优反演方法,对研究区内红树林冠层叶片的功能性状,即LMA、Narea、Pmass、Cab、Cxc和N/P的空间分布进行制图(图4)。在冠层叶片功能性状的空间分布格局上,Narea、Cab、Cxc和N/P的空间分布格局相对一致,均呈现中间区域数值较高,边缘区域数值相对较低的分布格局。LMA与Pmass的空间分布格局较为相似,在整

27、个研究区域内分布较为均匀。3 结论与讨论 本研究以珠海淇澳岛红树林群落为对象,采用PLSR+NDVI和PLSR+CWT两种无人机高光谱数据处理方法,反演研究区内红树林的10种冠层叶片功能性状。结果表明,PLSR+NDVI的方法更适用于红树林冠层叶片LMA、Pmass和Narea的反演,PLSR+CWT的方法更适用于N/P、Cab和Cxc的反演,但以上2种方法用于反演Nmass、Kmass、Parea和Karea的结果均不理想(R20.3)。与针叶林和落叶林的研究(Singh et al.,2015)相比,采用PLSR模型对红树林冠层叶片LMA和Nmass的计算结果精度偏低,这可能与树冠结构的变

28、异性密切相关。相较针叶林和落叶林,红树林的冠层组成和结构相对复杂。已有研究表明,树冠结构变异性的增加对冠层叶片色素、SLA和水分含量的预测影响相对较小,而对氮、磷含量的预测影响较大(Asner et al.,2008)。此外,淇澳岛红树林中包含卤蕨和蒲苇等草本植物,本研究建立的高光谱反演模型是混合了草本和木本2类生活型植物的混合反演模型,其精度可能受此影响较大。从淇澳岛红树林叶片功能性状结果看,淇澳岛红树林的光合固碳能力以及养分含量均优于全球红树林的平均水平(Quadros et al.,2021)。Quadros等表2 叶片功能性状统计数据Table 2Statistical data of

29、 leaf functional traits性状LMANmassPmassKmassN/PNareaPareaKareaCabCxc单位g/m2mg/gmg/gmg/gg/m2g/m2g/m2g/cm2g/cm2样本数/个46474747474646464444最小值50.1811.010.653.163.641.010.100.4914.583.55最大值208.6951.174.7332.5324.463.320.893.4259.4410.96平均值118.0922.222.0814.6912.242.380.231.5837.887.36标准差42.997.810.956.635.1

30、60.560.130.679.981.96变异系数0.360.350.460.450.420.230.540.420.260.27注:LMA:比叶重;Nmass:单位质量氮含量;Pmass:单位质量磷含量;Kmass:单位质量K含量;N/P:氮磷比;Narea:单位面积氮含量;Parea:单位面积磷含量;Karea:单位面积钾含量;Cab:叶绿素含量;Cxc:类胡萝卜素含量。冠层反射率(R)波长/nma)波长/nmb)冠层反射率(R)波长/nm 冠层反射率(R)波长/nma)波长/nmb)冠层反射率(R)波长/nm图2淇澳岛红树林树冠光谱特征(a.不同物种的冠层反射光谱;b.不同物种冠层光谱的

31、平均值及标准差)Fig.2Spectral characteristics of mangrove canopy on the Qiao Island(a.canopy reflectance spectra of different species;b.mean and standard deviation of canopy spectra of different species)2150王萌等:基于无人机高光谱遥感的淇澳岛红树林冠层叶片功能性状反演11 期(2017)发布了涉及全球多个红树林生态系统的红树林功能性状数据库,本研究实测的淇澳岛红树林叶片LMA均值(118.09 g/m2)

32、小于数据库中红树林叶 片 的 LMA 均 值(158.00 g/m2),而 Nmass均 值(22.22 mg/g)、Pmass均值(2.08 mg/g)、Narea均值(2.38 g/m2)和Kmass均值(14.69 mg/g)则大于数据库中红树林叶片的Nmass均值(15.00 mg/g)、Pmass均值(1.30 mg/g)、Narea均值(2.0 g/m2)和 Kmass均值(8 mg/g)。这一方面与不同地区的群落物种组成差异有关,另一方面也可能是中国华南地区强烈的氮沉降以及人为干扰所导致的。采用本研究建立的较优方法对研究区红树林冠层叶片的LMA、Pmass、Narea、N/P、C

33、ab和Cxc的含量进行反演和空间分布制图,得到研究区红树林冠层叶片功能性状的空间分布格局,该分布格局与冠层结构及物种的分布格局密切相关(Peng et al.,2019)。结合物种的空间分布信息看,卤蕨和老鼠簕2种草本植物叶片的功能性状值高于秋茄树和桐花树等木本植物。本研究表明,通过无人机高光谱数据反演得到的红树林冠层叶片功能性状,较好地反映红树林群落的水平结构和功能,结合地面调查数据,可深入挖掘物种组成与功能性状空间格局以及生态系统功能和过程的内在关系,在群落和生态系统尺度上实现红树林的快速调查和评估。基于无人机高光谱遥感的红树林冠层叶片功能性状反演,为空天地一体化监测红树林动态提供了基础(

34、郭庆华 等,2016)。红树林生态系统是一类便于无人机作业的生态系统,物种组成相对简单,空旷的潮间带为无人机提供了优越的飞行条件(冯家莉 等,2015)。但从本研究的实施过程看,基于多旋翼无人机开展大面积作业仍充满挑战。要获取高空间分辨率的高光谱数据,无人机的飞行高度不能过高,飞行速度也不能过快,否则会影响高光谱数据的质量和后期拼接。固定翼无人机的飞行特性决定其无法超低空低速飞行,也无法定点悬停,因此目前超高分辨率的无人机遥感数据仍主要借助多旋翼无人机获取。飞行时间对于多旋翼无人机来说图3植物叶片功能性状的实测值与高光谱遥感反演预测值对比Fig.3Comparison of observed

35、and predicted values of plant leaf functional traits by hyperspectral remote sensing inversion215143 卷热带地理是难以逾越的障碍。而多旋翼小型无人机的平均有效作业时间在2530 min,难以在低空飞行条件下大范围作业。此外,从本研究结果看,红树林冠层叶片功能性状的反演精度还有较大提升空间。可以尝试将不同生活型的红树林物种分开构建高光谱功能性状反演模型,以进一步提升模型的反演精度。由于红树林物种数量有限,在条件允许的情况下,可针对每一个红树林物种构建特定的功能性状反演模型,同时结合可见光影像的物种

36、识别结果,进一步提升冠层叶片功能性状的反演精度。参考文献(References):Asner G P,and Martin R E.2008.Spectral And Chemical Analysis of Tropical Forests:Scaling from Leaf to Canopy Levels.Remote Sensing of Environment,112(10):3958-3970.Chen S,Hong X,Harris C J,and Sharkey P M.2004.Sparse Modeling Using Orthogonal Forward Regressi

37、on with PRESS Statistic and Regularization.IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,34:898-911.冯家莉,刘凯,朱远辉,李勇,柳林,蒙琳.2015.无人机遥感在红树林资源调查中的应用.热带地理,35(1):35-42.Feng Jiali,Liu Kai,Zhu Yuanhui,Li Yong,Liu Lin,and Meng Lin.2015.Application of Unmanned Aerial Vehicles to Mangrove R

38、esources Monitoring.Tropical Geography,35(1):35-42.Floreano D,and Wood R J.2015.Science,Technology and the Future of Small Autonomous Drones.Nature,521:460-466.Gara T W,Skidmore A K,Darvishzadeh R,and Wang T.2019.Leaf to Canopy Upscaling Approach Affects the Estimation of Canopy Traits.GIScience and

39、 Remote Sensing,56(4):554-575.郭庆华,吴芳芳,胡天宇,陈琳海,刘瑾,赵晓倩,高上,庞树鑫.2016.无人机在生物多样性遥感监测中的应用现状与展望.生 物 多 样 性,24(11):1267-1278.Guo Qinghua,Wu Fangfang,Hu Tianyu,Chen Linhai,Liu Jin,Zhao Xiaoqian,Gao Shang,and Pang Shuxin.2016.Perspectives and Prospects of Unmanned Aerial Vehicle in Remote Sensing Monitoring of

40、Biodiversity.Biodiversity Science,24(11):1267-1278.Hedin L O.2004.Global Organization of Terrestrial Plant-Nutrient Interactions.Proceedings of the National Academy of Sciences of 图4研究区植物冠层叶片功能性状空间分布格局Fig.4Spatial distribution pattern of functional traits of canopy leaves in the study area2152王萌等:基于

41、无人机高光谱遥感的淇澳岛红树林冠层叶片功能性状反演11 期the United States of America,101(30):10849-10850.Kuenzer C,Bluemel A,Gebhardt S,Quoc T V,and Dech S.2011.Remote Sensing of Mangrove Ecosystems:A Review.Remote Sensing,3(5):878-928.Lichtenthaler H K.1987.Chlorophylls and Carotenoids:Pigments of Photosynthetic Biomembranes

42、.Methods in Enzymology,148:350-382.Liu S,Yan Z,Wang Z,Serbin S,Visser M,Zeng Y,Ryu Y,Su Y,Guo Z,Song G,Wu Q,Zhang H,Cheng K H,Dong J,Hau B C H,Zhao P,Yang X,Liu L,Rogers A,and Wu J.2023.Mapping Foliar Photosynthetic Capacity in Sub-Tropical and Tropical Forests with UAS-Based Imaging Spectroscopy:Sc

43、aling from Leaf to Canopy.Remote Sensing of Environment,293:113612.Peng L,Liu K,Cao J,Zhu Y,and Liu L.2019.Combining GF-2 and Rapideye Satellite Data for Mapping Mangrove Species Using Ensemble Machine-Learning Methods.International Journal of Remote Sensing,41(3):1-26.Peterson D L,Aber J D,Matson P

44、 A,Card D H,Swanberg N,Wessman C,and Spanner M.1988.Remote Sensing of Forest Canopy and Leaf Biochemical Contents.Remote Sensing of Environment,24(1):85-108.邱霓,徐颂军,邱彭华,杨文槐,杨秀,杨倩.2019.珠海淇澳岛红树林群落分布与景观格局.林业科学,55(1):1-10.Qiu Ni,Xu Songjun,Qiu Penghua,Yang Wenhuai,Yang Xiu,and Yang Qian.2019.Community Di

45、stribution and Landscape Pattern of the Mangrove on the Qiao Island,Zhuhai.Scientia Silvae Sinicae,55(1):1-10.Quadros A F,and Zimmer M.2017.Dataset of True Mangroves Plant Species Traits.Biodiversity Data Journal,(5):e22089.Quadros A F,Helfer V,Nordhaus I,Reuter H,and Zimmer M.2021.Functional Traits

46、 of Terrestrial Plants in the Intertidal:A Review on Mangrove Trees.The Biological Bulletin,241(2):123-139.Singh A,Serbin S P,Mcneil B E,Kingdon C C,and Townsend P A.2015.Imaging Spectroscopy Algorithms for Mapping Canopy Foliar Chemical and Morphological Traits and Their Uncertainties.Ecological Ap

47、plications,25(8):2180-2197.孙中宇,陈燕乔,杨龙,唐光良,袁少雄,林志文.2017.轻小型无人机低空遥感及其在生态学中的应用进展.应用生态学报,28(2):528-536.Sun Zhongyu,Chen Yanqiao,Yang Long,Tang Guangliang,Yuan Shaoxiong,and Lin Zhiwen.2017.Small Unmanned Aerial Vehicles for Low-Altitude Remote Sensing and Its Application Progress in Ecology.Chinese Jour

48、nal of Applied Ecology,28(2):528-536.Sun Z,Wang X,Wang Z,Yang L,Xie Y,and Huang Y.2021.UAVs as Remote Sensing Platforms in Plant Ecology:Review of Applications and Challenges.Journal of Plant Ecology,14(6):1003-1023.Ustin S L,Roberts D A,Gamon J A,Asner G P,and Green R O.2004.Using Imaging Spectrosc

49、opy to Study Ecosystem Processes and Properties.BioScience,54(6):523-34.Vane G,and Goetz A F H.1988.Terrestrial Imaging Spectroscopy.Remote Sensing of Environment,24:1-29.Wang L,Jia M,Yin D,and Tian J.2019.A Review of Remote Sensing for Mangrove Forests:1956-2018.Remote Sensing of Environment,231:11

50、1223.Wang Z,Chlus A,Geygan R,Ye Z,Zheng T,Singh A,Couture J J,Cavender-Bares J,Kruger E L,and Townsend P A.2020.Foliar Functional Traits from Imaging Spectroscopy Across Biomes in Eastern North America.New Phytologist,228(2):494-511.Wold S,Sjstrm M,and Eriksson L.2001.PLS-Regression:A Basic Tool of

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服