ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:209.42KB ,
资源ID:2338575      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2338575.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(立体几何体知识点归纳及基础练习.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

立体几何体知识点归纳及基础练习.doc

1、圆梦教育高一数学总复习学案 空间几何体(一)空间几何体的结构特征(1)多面体由若干个平面多边形围成的几何体. 旋转体把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。(2)柱,锥,台,球的结构特征1.1棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。1.2圆柱以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱. 2.1棱锥有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。2.2圆锥以直角三角形的一直角边所在的直线为旋转轴,其余

2、各边旋转而形成的曲面所围成的几何体叫圆锥。3.1棱台用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 4.1球以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。2.三视图正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。4.斜二测法:在坐标系中画直观图时,已知图形中平行

3、于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。 重点记忆:直观图面积=原图形面积(三)空间几何体的表面积与体积1、空间几何体的表面积棱柱、棱锥的表面积: 各个面面积之和圆柱的表面积 圆锥的表面积圆台的表面积 球的表面积扇形的面积公式(其中表示弧长,表示半径)2、空间几何体的体积柱体的体积 锥体的体积 台体的体积 球体的体积 二、巩固练习:1下列几何体各自的三视图中,有且仅有两个视图相同的是()A B C D2在斜二测画法的规则下,下列结论正确的是()A角的水平放置的直观图不一定是角B相等的角在直观图中仍然相等C相等的线段在直观

4、图中仍然相等D若两条线段平行,且相等,则在直观图中对应的两条线段仍然平行且相等3对于一个底边在轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )A.2倍 B.倍 C.倍 D.倍4已知三个球的体积之比为1:8:27,则它们的表面积之比为()A1:2:3B1:4:9C2:3:4D1:8:27 5有一个几何体的正视、侧视、俯视图分别如图所示,则该几何体的表面积为 ( )ABCD65656若右图是一个几何体的三视图,则这个几何体是()(A)圆锥(B)棱柱(C)圆柱 (D)棱锥7如右图所示,一个空间几何体的主视图和左视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体

5、的表面积为A B C D8棱长都是的三棱锥的表面积为( A )A. B. C. D. 9长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是( B ) A B C D都不对 10.三角形ABC中,AB=,BC=4,现将三角形ABC绕BC旋转一周,所得简单组合体的体积为( )CA B. C.12 D.11下图是一个几何体的三视图, 根据图中的数据,计算该几何体的表面积为( D )A.B.C.D.侧(左)视图俯视图44正(主)视图212题12某四棱锥的三视图如图所示,该四棱锥的表面积是( B )A32 B C48 D 13设正方体的棱长为,则它的外接球的表面积为()AB

6、2C4D14已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的表面积为 ( ) D . . . .15中,将三角形绕直角边旋转一周所成的几何体的体积为_。 16. 长方体的共顶点的三个侧面面积分别为,则它的体积为_.17已知圆台的上下底面半径分别是,且侧面面积等于两底面面积之和,求该圆台的母线长.18. (如图)在底半径为,母线长为的圆锥中内接一个高为的圆柱,求圆柱的表面积19已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸,计算这个几何体的表面积. 20. 已知某几何体的俯视图是如右所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形 (1)求该几何体的体积V; (2)求该几何体的侧面积S3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服