ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:2.19MB ,
资源ID:2328448      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2328448.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于重尾分布模型的智能电网通信系统业务流建模及其性能分析.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于重尾分布模型的智能电网通信系统业务流建模及其性能分析.pdf

1、Microcomputer Applications Vol.39,No.9,2023文章编号:10 0 7-7 57 X(2023)09-0222-04开发应用基于重尾分布模型的智能电网通信系统业务流建模及其性能分析微型电脑应用2 0 2 3年第39 卷第9 期谢连芳(国网四川省电力公司绵阳供电公司,四川,绵阳6 2 10 0 0)摘要:在传统电网业务流量建模主要利用泊松分布和马尔科夫自回归模型,其具有网络应用单一和数据传输量较小的缺点。当现代电网业务不断复杂化,这种建模方法已无法很好地体现智能电网业务流量的本质特征,因而研究了智能电网通信系统业务流建模及对其做了性能分析。给出一种综合业务行

2、为的流建模及仿真方法,其中突发业务流的相关特性利用了重尾分布进行建模,而随机业务利用了泊松分布建模。通过建立仿真,仿真结果表明了该方法能很好地反映了站级网络的业务行为并具备一定的灵活性。关键词:智能电网;通信系统;业务流;重尾分布;泊松分布XIE Lianfang中图分类号:TP393Smart Grid Communication Service Flow Modeling and Performance Analysis(Mianyang Power Supply Company of State Grid Sichuan Electric Power Co.,Ltd.,Mianyang

3、6210o0,China)Abstract:In traditional modeling of power grid business flow,it mainly uses Poisson distribution and Markovian autoregressivemodel.However,it has the shortcomings of a single network application and a small amount of data transmission.As modernpower grid business becomes more and more c

4、omplex,this modeling method can no longer well reflect the essential characteris-tics of smart grid business flows.This paper studies the obligation flow modeling and performance analysis of the smart gridcommunication system.A flow modeling and simulation method for comprehensive business behavior

5、is given.The relatedcharacteristics of burst business flow are modeled by heavy-tailed distribution,while random business is modeled by Poissondistribution.Through the simulation,the results show that the method proposed in this paper can well reflect the business be-havior of the station-level netw

6、ork and possess a certain degree of flexibility.Therefore,the method provides a theoretical ref-erence for network protocol design and network planning and management.Key words:smart grid;communication system;business flow;heavy-tailed distribution;Poisson distribution0引言智能电网是电网的智能化。它通过先进的传感和测量技术、先进

7、的设备技术、先进的控制方法在集成的高速双向通信网络的基础上构建而成 1-2 。根据系统运行特点,智能电网的站级网络目标含监视、控制、告警及信息交互等,而其对应的主要业务有数据采集、监视控制、操作闭锁以及保护信息管理 3。其中,通信行为及其业务数据具备特定的操作需求并呈现着一定的复杂性。智能电网的监测实验表明了以泊松分布为代表的短相关性去建模现代网络流量已不再符合,使用一种具备长相关特性的建模方法将更为实用。这也就是说网络流量的突发传输特征与传统业务量模型并不相同,不会因为统计时间尺度的增加而平滑-5。智能电网通信系统的业务流量的复杂特性对网络的设计、分析和仿真都有着很大的影响,建立一种能满足网

8、络实际运行过程中实时、精确、突发性强的信息交互需求的精确的数学模型将具作者简介:谢连芳(197 2 一),男,硕士,高级工程师,研究方向为大数据架构。.222文献标志码:ABased on Heavy-tailed Distribution Model有重要的意义。本文在研究智能电网数据传输特点的基础上,结合重尾分布模型,提出一种面向站级通信业务的流量建模方法,并通过仿真对流量与网络性能的影响关系进行了分析。1站级业务行为站级运行中的业务数据可以分为周期性、突发性、随机性三类 6 。其中,周期性的报文指监控主机轮询报文、智能设备周期上传或传给站控层的开关报文。随机性的报文指跳闸命令、智能电子设

9、备与监控机间互发的录波数据、事件记录文件 7。突发性的报文指保护动作、控制等随机事件发生后所产生的事件报告、控制命令、变位信息以及文件传输。业务模型具有站控层、间隔层与过程层的分层分布式结构,站内信息传输主要有以下几种。1)间隔层与过程层之间的通信控制测量单元与继电保护装置均属于间隔层的设备,与Microcomputer Applications Vol.39,No.9,2023间隔层其他设备可自由交换数据,间隔层中的设备主要采集故障与正常情况下的交流电气量、设备的状态信息与故障诊断信息量。2)间隔层内部通信间隔层内部功能模块之间,继电保护装置与监控、测量、控制设备间的数据通信主要包括开关状态

10、、设备运行的状态、测量数据、同步采样信息等。3)间隔层之间的通信间隔层之间的数据交换主要有:主后备切换的工作状态、相关保护的闭锁动。4)间隔层和站控层之间的通信(1)测量数据以及状态信息设备故障与正常状态下的测量与计算值,刀闸、开关、主变挡位、运行状态、保护装置动作信息等。(2)操作信息开关遥控分合闸命令,主变挡位升降急停的调节,保护装置的压板投入退出等。(3)参数信息安全自动装置与继电保护装置的保护定值。5)站控层内部通信站控层中不同设备间存在数据交换,按照功能与任务来传送所需要的状态信息、操作命令、测量数据等。站级网通信模型中节点交互产生与电网运维任务相关的业务报文,本文将根据其特点进行流

11、量建模。(1)周期性业务流:模型中采用等间隔固定周期方式形成业务,报文大小相同。(2)随机性业务流:采用泊松分布作为业务到达模型。到达间隔T,服从期望为入分布,其数学表达式为T,=1一e。(3)突发性业务流:采用自相似数学模型来进行描述。所产生突发性业务流在到达时间上有着先后顺序,表现出一种长程相关统计特征,而这种特性则可用数学上的自相似性来进行描述。2自相似业务序列突发业务流量可用自相似模型来描述。自相似业务流突发生成并成批到达,极易引发短期内节点报文队列更加拥塞,排队延迟增大。基于泊松模型的网络设计已无法较好地描述业务流的特征。因此,如何去选择适当的数学工具,建立精确易实现的智能电网业务流

12、量模型有着重要意义。2.1自相似的数学定义智能电网突发业务流可视为一种离散时间序列。给定离散时间随机过程S(t)为(at,t=0,1,2,)。平稳时间序列的m重聚集序列为S(),各聚集时间序列的均值所生成的新序列为(1)观测聚集时间序列的k阶自相关函数r(k),若各尺度分块聚集后的序列相关系数和原序列一致,即经过压缩以后过程的统计特征如均值=EX,、方差=E(Xt 一)、自相关函数r(k)=E(X,)(X,+-)/,k=1,2,3仍然不变,则此数据过程就是一种自相似过程。开发应用广义平稳自相似过程数学描述:具有参数(01)的离散随机过程X为自相似过程,若对m=1,2,各时间聚集序列尺度下方差V

13、ar(m)=Va r()/m,自相关函数rc(m)(k)=rc(k),并且 H=1-/2。式中,H为Hurst自相似系数,自相关函数需满足R(k)=H(2H-1)kH一2。当0.5 H)-,8,02这种分布的尾部遵循能量分布的规则呈双曲线型衰减,比起尾部呈指数衰减的分布来说,其衰减过程要慢很多。参数称形状参数,描述拖尾分布的重量,越小,该分布曲线的拖尾就越重。帕累托(pareto)分布是一种较为典型的重尾分布,其分布函数的数学描述如下:F()=f()=0;(k)F(z)=1-(),f()=是(兰)Q+1,E,x.=(,-1.,)-kpareto分布具有无限方差,如果1时,分布具有无穷均值。随着

14、减小,概率大部分聚于尾部。数据发送持续过程中,ON或OFF时长分布若有任意一个是重尾分布,则无穷个此业务源的汇聚流将呈现自相似特征。利用该方法产生的自相似序列,其自相似程度和紧密相关:H=(3一)/2,值越小(1 2),自相似程度越大。ON/OFF模型描述了网络数据源的最基本行为,能解释自相似流量产生的原因,可以应用于网络的特定层处理特定问题。就自相似业务对网络性能影响的研究结果表明,业务流的自相似特性,使得网络性能的分析比起短相关特性的流量模型来讲更加复杂,网络性能随着自相似程度的递增,在丢包率、吞吐量以及延迟性能上会表现得更差。3业务量模型的加载及通信仿真3.1通信网仿真模型的建立流量建模

15、与网络系统的性能仿真评价具有密不可分的km联系,是其中一个非常重要的环节。本文对智能电网站级网络业务流模型进行了研究,通过改变不同的业务流量参数,对网络的性能,包括吞吐量、网络平均响应时间、丢包率等进行分析。仿真采用OPNETMODELER14.5软件,其模型建立分为网络层、节点层和进程层。假定所仿真的站级通信网为16 节点单元,不考虑操作任务、层次关系、优先级别等因素,所建立网络拓扑结构包括.223微型电脑应用2 0 2 3年第39 卷第9 期(2)(3)Microcomputer Applications Vol.39,No.9,202315个IDE节点,1个监控节点S1,信道交换速率10

16、 0 Mbit/s。建立网络拓扑图如图1所示。12.5APPL25.037.880.082.875.0子网节点模型如图2 所示。定义Self-similarscourec和Possion source源节点分别产生具有长相关特性的自相似突发业务流和无记忆的泊松随机业务流。泊松序列可利用source源节点的possion模型得到,自相似序列将采用多源汇聚的重尾ON/OFF序列给出。节点模型中的queue模块负责对汇聚合成序列进行排队统计处理。dhcpapplicationriptpaludptcpip_encap开发应用实验中,通过改变ON/OFF时长分布的形状参数的值,得到不同的自相似系数H,

17、从而研究不同突发强度下网络性能的变化规律。不同值下的网络性能指标如表1所示。表1不同取值下的网络性能指标ON/OFF时间分布理论H值Pareto(0.1,1.6)0.60Pareto(0.1,1.4)0.80EDPareto(o.1,1.2)3.2仿真结果分析图3是在不同自相似系数H下的网络平均延迟性能结果图。3条曲线分别代表H从0.6 0.9 时延迟的变化情况。当H值为0.9时,网络延迟达到0.12 2 ms,网络性能最ED差。这是因为突发业务的自相似特性会使得流量序列带来长相关和慢衰减方差特性,从而造成业务报文在转发排队过图1网络拓扑图程中造成信元丢失率呈重尾方式变化。且有限容量的缓冲器会

18、引起业务量相关结构的变化,从而引发各项性能指标的下降。0.000 150.00014F0.00013F0.000 12F0.000 11F0.00010F0.000090.00008CPU0.00007F0.000.060.000 05F0.00004F0.00003project1l-scenario3-DES-1projectll-scenario4-DES-i0.00002projectll-scenario5-DES-irsvp0.000012.00OSS:MarMar微型电脑应用2 0 2 3年第39 卷第9 期网络延迟/ms0.1130.1160.900.122H-0.9H-0.8

19、H-0.62021202122Mar:3 6:4uid2021ud20212pm:68:MarMar0:0021MarMar11:Mar1:40:50图3随着自相似系数H改变时网络延迟曲线变化ip3.3合成序列的自相关性分析如图4所示,在queue模块中对汇聚业务序列进行了自Self-similarscourecarpPossion souroequeueperiodicityhub_rx_o_0图2 节点模型设置IED0-IED14节点以固定间隔0.0 2 s,S1为目标节点,周期性发送上报数据。设置S1节点及IDE1-IDE8的source源模块以泊松分布产生随机业务报文,且报文产生间隔入

20、为10 ms,报文大小服从均值0.3kbyte/s的负指数分布。设置IDE4-IDE14及S1节点中的Self-similarscoure模块ON/OFF时长分布为Pareto(k,),仿真时间5min。实验中,通过改变ON/OFF时长分布的形状参数取值,获取不同自相似系数H,从而考察网络性能在各种突发强度下的变化规律。定义自相似源节点和Possion源节点分别生成具有长相关特性的自相似突发流量和无记忆泊松随机流量。相关性分析统计。实验过程中,每次统计150 0 0 个连续样本数据包,并结合方差-时间图检验法对样本数据进行统计相mac关性分析,所得合成业务流的H值检验结果如表2 所示。实验过程

21、中,每次统计150 0 0 个连续样本数据包,并结hub_tx_o_0合方差-时间图检验法对样本数据进行统计相关性分析,所得合成业务流的H值检验结果如表2 所示。Self-similarsource_oPossion source_operiodicity_o224queuel图4合成业务图sinkMicrocomputer Applications Vol.39,No.9,2023H=0.7577H=0.8040H=0.8520H=0.8570H=0.8738H=0.9076由表2 可知,各类业务汇聚序列自相似系数H仍分布于(0.5,1)。由此可知,节点合成所得业务量在一定的时间尺度下依然具

22、有统计自相似性,且合成后H值有所减小。3.4仿真结论(1)由实验结果表明,自相似业务流的长相关性和突发性不会因为与短相关业务的汇聚合成而被平滑,合成后流量的统计特性依然具有较强的自相似性。模型所产生的仿真业务流序列能较好地符合站级网络业务流统计特性的基本特征,验证了业务流产生模型的有效性。(2)站级网络的周期性报文负荷较低,对网络性能影响较小,但遇随机事件时(故障发生)所做出的响应动作(如大量文件的传输)会造成负载加重,显著影响网络性能。因此有必要考虑不同突发程度下的站级网性能情况,以合理指导网络规划和设计。4总结本文对智能电网运行时的相关业务行为及统计特性进行分析,并给出了一种结合其业务行为

23、特点的流量建模及网络仿真方法。实验表明,此方法能较好地体现站级智能电网的通信特点,揭示了不同突发强度下的网络性能规律,从而开发应用表2 合成业务流参数为智能通信网络业务量特性分析、协议设计及网络配置规划H=0.7131提供参考。站级网络的周期性报文负荷较低,对网络性能影响较小,但遇随机事件时所做出的响应动作,如大量文件的H=0.7354传输、各种信号命令的传递、会造成负载加重,显著影响网络数据包到达率H=0.8219服从possion分布H=0.8327入=0.0 2 sH=0.8431H=0.8602微型电脑应用2 0 2 3年第39 卷第9 期性能。且由于智能电网特殊的工作指标,对信息流传

24、递的实时性与可靠性均有严格要求。因此有必要考虑在不同突发程度下的站级网性能变化情况,从而合理指导网络规划设计。1 FA NG X,M ISRA S,XU E G L,e t a l.Sm a r t G r i d-The new and Improved Power Grid:a SurveyLJJ.IEEE Communications Surveys&Tutorials,2012,14(4):944-980.2 宋亚奇,周国亮,朱永利.智能电网大数据处理技术现状与挑战 J.电网技术,2 0 13,37(4):92 7-935.3王瑾.基于Web网络技术的皮革企业集成化信息管理系统设计 J

25、.中国皮革,2 0 2 1,50(6):32-35.4魏志文.智能电网下分布式电源并网容量配置优化J】.粘接,2 0 2 1,47(8):10 2-10 5.5李辉,王全强,杨定坤,等.智能电网分层分布式雾结构的入侵检测方法 J.单片机与嵌入式系统应用,2021,21(7):25-29.6 曹波,朱祝英,吴峰,等.智能电网下隐私保护技术研究与应用J.计算机与数字工程,2 0 17,45(9):1809-1813.7 姚烨婷,陈瑾.可信度计算在智能电网综合停电管理平台上的应用J.微型电脑应用,2 0 2 1,37(11):204-207.参考文献(收稿日期:2 0 2 1-12-30)(上接第2

26、 18 页)5总结针对电力消纳对配电网运行影响评估,本研究针对配电网新能源全寿命消纳问题,提出了配电网运行的约束条件,并构建了改进型粒子算法模型。将影响配电网运行的宏观数据因子转换为微观数据分析,提高了配电网故障影响因素的分析能力。通过实验结果表明,本研究方法具有一定的技术优势,但是在配电网运行过程仍然存在一些不足,需要进一步的探索与研究。1柯梓阳,汪隆君,王钢。考虑负荷裕度的主动配电网运行优化模型 J.电网技术,2 0 18,42(8):7.2 庄仲,吴杰康,杨金文,等.新能源配电网“源-网-荷”协同运行优化模型J.智能电网(汉斯),2 0 2 1,11(2):16.3王强钢,田雨禾,王健,

27、等.计及充电站无功补偿的配电网日前-实时协调优化模型J.电力系统自动化,2021,45(17):8.4张剑,姚潇毅,尹柏强,等.采用选代求解的电动汽车优化充电算法J.控制理论与应用,2 0 18,35(7):12.5李植鹏,谢莹华,肖鸣,等.计及V2G模式的有源配电网协调运行优化 J.广东电力,2 0 19,32(6):7.6陈晔,刘宗歧,常源,等.计及配电网信息系统可靠性的分布式光伏优化配置方法 J.可再生能源,2 0 19,37(5):656-663.7何炜,韦钢,吴万禄,等.计及充放储一体站的主动配电网DG出力优化研究J.现代电力,2 0 18,35(2):7.8任郡枝,陈健,姜心怡,等

28、.考虑可移动式储能与网络重构的弹性配电网灾后恢复策略.电力建设,2020,41(3):86-92.参考文献9卞艺衡,别朝红.面向弹性提升的智能配电网远动开关优化配置模型J.电力系统自动化,2 0 2 1,45(3):7.10姚宗强,赵长伟,马世乾,等.含多端SOP的智能配电网运行优化及示范应用 J.电力系统及其自动化学报,2 0 18,30(12):7.11谢正勇,刘捷,许勇,等.面向大数据流量的交互式智能电网通信 J.微型电脑应用,2 0 2 1,37(4):4.12关浩华.业扩数据统计的智能化应用研究 J.微型电脑应用,2 0 2 0,36(7):4.(收稿日期:2 0 2 2-0 1-2 4).225

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服