ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:446.04KB ,
资源ID:2322135      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2322135.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021-2022学年高中数学-全书要点速记学案-新人教B版必修第一册.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021-2022学年高中数学-全书要点速记学案-新人教B版必修第一册.doc

1、2021-2022学年高中数学 全书要点速记学案 新人教B版必修第一册2021-2022学年高中数学 全书要点速记学案 新人教B版必修第一册年级:姓名:全书要点速记第一章集合与常用逻辑用语 知识点一集合1常用数集及其记法常用数集自然数集正整数集整数集有理数集实数集记法NN或N*ZQR2.集合的区间表示及几何表示设a,b是两个实数,而且ab.我们作出规定:集合区间表示区间名称几何表示x|axba,b闭区间x|axb(a,b)开区间x|axba,b)半开半闭区间x|axb(a,b半开半闭区间集合区间表示几何表示R(,)x|xaa,)x|xa(a,)x|xb(,bx|xb(,b)3.类比实数的大小关

2、系理解集合间的关系实数集合定义ab包含两层含义:ab或abAB包含两层含义:AB或AB相等若ab,且ba,则ab若AB,BA,则AB传递性若ab,bc,则ac若AB,BC,则AC若ab,bc,则ac若AB,BC,则AC4.有限集合的子集个数含有n个元素的集合有2n个子集,有(2n1)个真子集,有(2n1)个非空子集,有(2n2)个非空真子集5集合中元素的三个特性特性含义示例确定性集合的元素必须是确定的,因此,不能确定的对象不能组成集合,即给定一个集合,任何对象是不是这个集合的元素,应该可以明确地判断出来集合A1,2,3,则1A,4A互异性对于一个给定的集合,集合中的元素一定是不同的,因此,集合

3、中的任意两个元素必须都是不同的对象,相同的对象归入同一个集合时只能算作集合中的一个元素集合x,x2x中的x应满足xx2x,即x0且x2无序性集合中的元素可以任意排列集合1,0和集合0,1是同一个集合6.的概念及性质概念不含任何元素的集合叫做空集性质1空集是任意一个集合A的子集,即A2.空集是任意一个非空集合A的真子集,即A(A)7.集合的基本运算并集的概念ABx|xA或xB并集的性质(1)A(AB),B(AB);AAA,AA;ABBA;(AB)CA(BC);(2)若AB,则ABB;反之,若ABB,则AB交集的概念ABx|xA且xB交集的性质(1)(AB)A,(AB)B;AAA,A;ABBA;(

4、AB)CA(BC);(AB)C(AC)(BC),(AB)C(AC)(BC);(2)若AB,则ABA;反之,若ABA,则AB补集的概念UAx|xU且xA补集的性质(1)UU,UU,U(UA)A,A(UA)U,A(UA);(2)若AB,则UAUB;反之,若UAUB,则AB;(3)若AB,则UAUB;反之,若UAUB,则AB;(4)U(AB)(UA)(UB);U(AB)(UA)(UB) 知识点二常用逻辑用语1全称量词命题与存在量词命题的否定命题类型否定存在量词命题:xM,p(x)否定为全称量词命题:xM,p(x)全称量词命题:xM,q(x)否定为存在量词命题:xM,q(x)命题p命题p的否定(p)真

5、假假真2常见的否定词语正面词语()是都是任意(所有)存在至多有1个至少有1个或且否定词语()不是不都是某个不存在至少有2个1个也没有且或3.充分条件与必要条件p与q满足的关系p是q的_条件pq且qp充分不必要pq且qp必要不充分pq且qp(pq)充要pq且qp既不充分也不必要第二章等式与不等式 知识点等式与不等式1等式与不等式的性质等式的性质文字语言符号语言性质1等式的两边同时加上同一个数或代数式,等式仍成立如果ab,那么对任意c,都有acbc性质2等式的两边同时乘以同一个不为零的数或代数式,等式仍成立如果ab,那么对任意不为零的c,都有acbc不等式的性质别名性质内容注意性质1可加性如果ab

6、,那么acbc可逆性质2可乘性如果ab,c0,那么acbcc的符号性质3可乘性如果ab,c0,那么acbcc的符号性质4传递性如果ab,bc,那么ac同向性质5对称性abba可逆推论1移项法则如果abc,那么acb可逆推论2同向可加性如果ab,cd,那么acbd同向推论3同向同正可乘性如果ab0,cd0,那么acbd同向同正推论4可乘方性如果ab0,那么anbn(nN,n1)同正推论5可开方性如果ab0,那么同正2.等式与不等式的运用比较大小的方法方法依据应用范围作差法ab0ab;ab0ab;ab0ab整式、分式的大小比较比较大小的方法作商法a0,b0,则1ab;1ab;1ab乘积式、指数式的

7、大小比较a0,b0,则1ab;1ab;1ab乘方法a2b2,且a0,b0ab无理数(式)的大小比较十字相乘法对于二次三项式Ex2FxG,如果能找到a,b,c,d,使得Eac,Gbd,且Fadbc,则Ex2FxG(axb)(cxd)一元二次方程根与系数的关系如果一元二次方程ax2bxc0(a0)的两根是x1,x2,那么x1x2,x1x23.常用结论重要不等式a2b22ab,当且仅当ab时,等号成立基本不等式(a0,b0),当且仅当ab时,等号成立基本不等式的变形(1)2(a,b同号),2(a,b异号);(2)(ab)4(ab0);(3)(a,b0).说明:上述不等式均为当且仅当ab时等号成立最值

8、定理设x,y都是正数.(1)若xyS(和为定值),则当xy时,积xy取得最大值;(2)若xyP(积为定值),则当xy时,和xy取得最小值2.说明:应用均值不等式求最值的条件为“一正、二定、三相等”第三章函数 知识点一函数的图像函数的图像变换平移变换函数yf(xa)(a0)的图像可以由函数yf(x)的图像沿x轴向左(a0)或向右(a0)平移|a|个单位长度得到;函数yf(x)a(a0)的图像可以由函数yf(x)的图像沿y轴向上(a0)或向下(a0)平移|a|个单位长度得到对称变换函数yf(x)的图像可由函数yf(x)的图像作关于y轴的对称变换得到;函数yf(x)的图像可由函数yf(x)的图像作关

9、于x轴的对称变换得到;函数yf(x)的图像可由函数yf(x)的图像作关于原点的对称变换得到翻折变换作函数yf(|x|)的图像,可先作函数yf(x)的图像,保留函数yf(x)的图像在y轴上及y轴右侧的部分,并将y轴左侧的图像换成y轴右侧的图像沿y轴翻折而成的图像即可;作函数y|f(x)|的图像,可先作函数yf(x)的图像,保留函数yf(x)的图像在x轴上及x轴上方的部分,并将x轴下方的部分沿x轴翻折到x轴上方即可 知识点二函数的单调性条件一般地,设函数yf(x)的定义域为D,且ID,如果对任意x1,x2I,当x1x2时,都有f(x1)f(x2)f(x1)f(x2)结论则称yf(x)在I上是增函数

10、(也称在I上单调递增)则称yf(x)在I上是减函数(也称在I上单调递减)图示自左向右图像逐渐上升自左向右图像逐渐下降判断方法任取x1,x2D,x1x2,那么当x1x2时,f(x1)f(x2)(x1x2)f(x1)f(x2)00f(x)在区间D上单调递增;当x1x2时,f(x1)f(x2)(x1x2)f(x1)f(x2)00f(x)在区间D上单调递减1常见函数的单调性函数单调性一次函数yaxb(a0)a0时,在R上单调递增;a0时,在R上单调递减反比例函数y(a0)a0时,单调递减区间是(,0)和(0,);a0,单调递增区间是(,0)和(0,)二次函数ya(xm)2n(a0)a0时,单调递减区间

11、是(,m,单调递增区间是m,);a0时,单调递减区间是m,),单调递增区间是(,m对勾函数yx(p0)单调递增区间是(,和,),单调递减区间是,0)和(0,.2.单调函数的运算性质f(x)g(x)f(x)g(x)f(x)g(x)增函数增函数增函数不能确定单调性增函数减函数不能确定单调性增函数减函数减函数减函数不能确定单调性减函数增函数不能确定单调性减函数3.函数的最值最大值最小值定义一般地,设函数f(x)的定义域为D,且x0D:如果对任意xD,都有f(x)f(x0),则称f(x)的最大值为f(x0),而x0称为f(x)的最大值点一般地,设函数f(x)的定义域为D,且x0D:如果对任意xD,都有

12、f(x)f(x0),则称f(x)的最小值为f(x0),而x0称为f(x)的最小值点几何意义函数的最大值对应其图像最高点的纵坐标函数的最小值对应其图像最低点的纵坐标常用结论(1)如果函数yf(x)在区间a,b上单调递增,那么函数yf(x),xa,b在xa处取得最小值,在xb处取得最大值;(2)如果函数yf(x)在区间a,b上单调递减,那么函数yf(x),xa,b在xa处取得最大值,在xb处取得最小值;(3)如果函数yf(x)在区间a,b上单调递增,在区间b,c上单调递减,那么函数yf(x),xa,c在xb处取得最大值;(4)如果函数yf(x)在区间a,b上单调递减,在区间b,c上单调递增,那么函

13、数yf(x),xa,c在xb处取得最小值 知识点三函数的奇偶性1函数的奇偶性定义的等价式奇函数定义的等价式:f(x)f(x)f(x)f(x)0或1(f(x)0);偶函数定义的等价式:f(x)f(x)f(x)f(x)0或1(f(x)0)常用结论(1)如果一个奇函数在原点处有定义,那么一定有f(0)0.有时可以用这个结论来判定一个函数不是奇函数;(2)奇函数的图像关于原点对称,且在关于原点对称的区间上有相同的单调性;偶函数的图像关于y轴对称,且在关于原点对称的区间上有相反的单调性上述结论可简记为“奇同偶异”2.奇偶函数的运算性质及复合函数的奇偶性设非零函数f(x),g(x)的定义域分别是F,G,若

14、FG,则有下列结论:f(x)g(x)f(x)g(x) f(x)g(x)f(x)g(x)fg(x)偶函数偶函数偶函数偶函数偶函数偶函数偶函数奇函数不能确定奇偶性奇函数偶函数奇函数偶函数奇函数偶函数奇函数奇函数奇函数奇函数偶函数奇函数注意:上述表格中不考虑f(x)g(x)0;fg(x)中,需xG,g(x)F.3函数图像的对称性轴对称函数yf(x)在定义域内恒满足的条件函数yf(x)的图像的对称轴f(ax)f(ax)直线xaf(x)f(ax)直线xf(ax)f(bx)直线x中心对称函数yf(x)在定义域内恒满足的条件函数yf(x)图像的对称中心f(ax)f(ax)2b点(a,b)f(x)f(ax)b

15、点f(ax)f(bx)c点 知识点四函数与方程、不等式之间的关系零点的意义方程f(x)0有实数根函数yf(x)的图像与x轴有交点函数yf(x)有零点函数零点存在定理如果函数yf(x)在区间a,b上的图像是连续不断的,并且f(a)f(b)0(即在区间两个端点处的函数值异号),则函数yf(x)在区间(a,b)中至少有一个零点,即x0(a,b),f(x0)0二分法二分法的解题原理是函数零点存在定理. 通过二分法使有解区间逐步缩小,体现“无限逼近思想”1二次函数与一元二次方程、不等式的对应关系000二次函数yax2bxc(a0)的图像一元二次方程ax2bxc0(a0)的根有两个相异的实数根x1,x2有

16、两个相等的实数根x1x2没有实数根一元二次不等式的解集ax2bxc0(a0)x|xx1或xx2xR|xRax2bxc0(a0)x|x1xx22.不等式恒成立问题的解法(1)a0时,ax2bxc0(0)对任意实数x恒成立的条件是()(2)对于参数较易分离且分离后函数的最值易求的问题都可以采用分离参数法,其常用的结论是:g(a)f(x)(g(a)f(x)恒成立等价于g(a)f(x)max(g(a)f(x)min)3方程f(x)0(f(x)ax2bxc,a0)的根的分布问题根的分布图像所需条件x1x2kkx1x2x1kx2f(k)0x1,x2(k1,k2)x1,x2中有且仅有一个在(k1,k2)内f(k1)f(k2)0或f(k1)0,k1或f(k2)0,k2

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服