ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:336.01KB ,
资源ID:2319153      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2319153.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(初高中数学衔接知识点专题(一)数与式的运算.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

初高中数学衔接知识点专题(一)数与式的运算.doc

1、初高中数学衔接知识点专题(一) ★ 专题一 数与式的运算 【要点回顾】 1.绝对值 [1]绝对值的代数意义: .即 . [2]绝对值的几何意义: 的距离. [3]两个数的差的绝对值的几何意义:表示 的距离. [4]两个绝对值不等式:;. 2.乘法公式 我们在初中已经学习过了下列一些乘法公式: [1]平方差

2、公式: ; [2]完全平方和公式: ; [3]完全平方差公式: . 我们还可以通过证明得到下列一些乘法公式: [公式1] [公式2](立方和公式) [公式3] (立方差公式) 说明:上述公式均称为“乘法公式”. 3.根式 [1]式子叫做二次根式,其性质如下: (1) ;(2) ;(3) ; (4)

3、 . [2]平方根与算术平方根的概念: 叫做的平方根,记作,其中叫做的算术平方根. [3]立方根的概念: 叫做的立方根,记为 4.分式 [1]分式的意义 形如的式子,若B中含有字母,且,则称为分式.当M≠0时,分式具有下列性质: (1) ; (2) . [2]繁分式 当分式的分子、分母中至少有一个是分式时,就叫做繁分式,如, 说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利

4、用分式的基本性质. [3]分母(子)有理化 把分母(子)中的根号化去,叫做分母(子)有理化.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程 【例题选讲】 例1 解下列不等式:(1) (2)>4. 例2 计算: (1) (2) (3) (4) 例3 已知,求的值. 例4 已知,求的值. 例5 计算(没有特殊说明,本节中出现的字母均为正

5、数): (1) (2) (3) (4) 例6 设,求的值. 例7 化简:(1) (2) (1)解法一:原式= 解法二:原式= (2)解:原式= 说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式 . 【巩固练习】 1. 解不等式 2. 设,求代数式的值. 3. 当,求的值. 4. 设,求的值.

6、 5. 计算 6.化简或计算: (1) (2) (3) (4) ● 各专题参考答案 ● 专题一数与式的运算参考答案 例1 (1)解法1:由,得; ①若,不等式可变为,即; ②若,不等式可变为,即,解得:.综上所述,原不等式的解为. 解法2: 表示x轴上坐标为x的点到坐标为2的点之间的距离,所以不等式

7、的几何意义即为x轴上坐标为x的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x的点在坐标为3的点的左侧,在坐标为1的点的右侧.所以原不等式的解为. 解法3:,所以原不等式的解为. (2)解法一:由,得;由,得; ①若,不等式可变为,即>4,解得x<0,又x<1,∴x<0;②若,不等式可变为,即1>4,∴不存在满足条件的x; ③若,不等式可变为,即>4, 解得x>4.又x≥3,∴x>4. 综上所述,原不等式的解为x<0,或x>4. 解法二:如图,表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|=|x-1|;|x-3|表示x轴上点P到坐标为2的点B之间的距离

8、PB|,即|PB|=|x-3|. 所以,不等式>4的几何意义即为|PA|+|PB|>4.由|AB|=2, 可知点P 在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧. 所以原不等式的解为x<0,或x>4. 例2(1)解:原式= 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. (2)原式= (3)原式= (4)原式= 例3解: 原式= 例4解: 原式= ① ②,把②代入①得原式= 例5解:(1)原式= (2)原式= 说明:注意性质的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论. (3)原式= (4) 原式= 例6解: 原式= 说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量. 【巩固练习】 1. 2. 3.或 4. 5. 6. - 6 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服