ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:285.86KB ,
资源ID:2316637      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2316637.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高二数学选修2-1测试题(综合试题).doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高二数学选修2-1测试题(综合试题).doc

1、选修2-1数学综合测试题一、选择题1“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2若是假命题,则( )A.是真命题,是假命题B.、均为假命题C.、至少有一个是假命题D.、至少有一个是真命题3,是距离为6的两定点,动点M满足+=6,则M点的轨迹是 ( )A.椭圆 B.直线 C.线段 D.圆4 双曲线的渐近线方程为( )A. B. C. D. 5中心在原点的双曲线,一个焦点为,一个焦点到最近顶点的距离是,则双曲线的方程是()A BCD6已知正方形的顶点为椭圆的焦点,顶点在椭圆上,则此椭圆的离心率为( ) A B C D7椭圆与双曲线有相同的焦点,则的值

2、为( )A1 BC2 D38与双曲线有共同的渐近线,且过点(2,2)的双曲线标准方程为( )(A)(B) (C) (D)9已知A(1,2,6),B(1,2,6)O为坐标原点,则向量的夹角是( )A0 BCD10与向量平行的一个向量的坐标是( )A(,1,1) B(1,3,2) C(,1)D(,3,2)1111已知长方体中,,是侧棱的中点,则直线与平面所成角的大小为()A B C D以上都不正确12若直线与圆相切,则的值为( )A B C D或二、填空题13如图ABCDA1B1C1D1是正方体,B1E1D1F1,则BE1与DF1所成角的余弦值是_.14已知椭圆的焦点重合,则该椭圆的离心率是_15

3、已知方程表示椭圆,则的取值范围为_16在正方体中,为的中点,则异面直线和间的距离三、解答题17正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.18求渐近线方程为,且过点的双曲线的标准方程及离心率。19设命题p:不等式的解集是;命题q:不等式的解集是,若“p或q”为真命题,试求实数a的值取值范围.20已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(3,m)到焦点的距离等于5,求抛物线的方程和m的值21如图,四边形ABCD为正方形,PD平面ABCD,PDQA,QA=AB=PD(I)证明:平面PQC平面DCQ(II)求二面角Q

4、-BP-C的余弦值22已知椭圆C:+=1(ab0)的左、右焦点分别为F1,F2,点E在椭圆C上,且EF1F1F2,|EF1|=,|EF2|=,求椭圆C的方程.试卷第3页,总4页参考答案1B【解析】试题分析: ,则且;反之,且时,故选B.考点:充要条件的判断.2C【解析】试题分析:当、都是真命题是真命题,其逆否命题为:是假命题、至少有一个是假命题,可得C正确.考点: 命题真假的判断.3C【解析】解题分析:因为,是距离为6,动点M满足+=6,所以M点的轨迹是线段。故选C。考点:主要考查椭圆的定义。点评:学习中应熟读定义,关注细节。4C【解析】因为双曲线,a=4,b=3,c=5,则其渐近线方程为,选

5、C.5A【解析】试题分析:由焦点为,所以,双曲线的焦点在y轴上,且,焦点到最近顶点的距离是,所以,()1,所以,所以,双曲线方程为:.本题容易错选B,没看清楚焦点的位置,注意区分.考点:双曲线的标准方程及其性质.6A【解析】试题分析:设正方形的边长为1,则根据题意知,所以椭圆的离心率为考点:本小题主要考查椭圆中基本量的运算和椭圆中离心率的求法,考查学生的运算求解能力.点评:求椭圆的离心率关键是求出,而不必分别求出7A【解析】试题分析:因为椭圆与双曲线有相同的焦点,所以,且椭圆的焦点应该在轴上,所以因为,所以考点:本小题主要考查椭圆与双曲线的标准方程及其应用.点评:椭圆中,而在双曲线中8B【解析

6、】试题分析:设所求的双曲线方程为,因为过点(2,2),代入可得,所以所求双曲线方程为.考点:本小题主要考查双曲线标准方程的求解,考查学生的运算求解能力.点评:与双曲线有共同的渐近线的方程设为是简化运算的关键.9C【解析】试题分析:应用向量的夹角公式=1所以量的夹角是,故选C。考点:本题主要考查向量的数量积及向量的坐标运算.点评:较好地考查考生综合应用知识解题的能力以及运算能力,属于基本题型。10C; 【解析】试题分析:向量的共线(平行)问题,可利用空间向量共线定理写成数乘的形式即也可直接运用坐标运算。经计算选C。考点:本题主要考查向量的共线及向量的坐标运算.点评:有不同解法,较好地考查考生综合

7、应用知识解题的能力。11B12C【解析】试题分析:根据题意,由于直线与圆相切,则圆心(0,0)到直线x+y=m的距离为,则可知得到参数m的值为2,故答案为C.1314【解析】试题分析:抛物线的焦点为,椭圆的方程为:,所以离心率.15【解析】试题分析:方程表示椭圆,需要满足,解得的取值范围为.考点:本小题主要考查椭圆的标准方程,考查学生的推理能力.点评:解决本小题时,不要忘记,否则就表示圆了.16【解析】试题分析:设正方体棱长为,以为原点,建立如图所示的空间直角坐标系,则,设和公垂线段上的向量为,则,即,又,所以异面直线和间的距离为17【解析】如图,建立空间直角坐标系,则A(2,0,0),E(0

8、,2,1),F(1,0,2),G(2,1,0),所以=(1,-2,1),=(2,-1,-1),=(0,-1,0).设n=(x,y,z)是平面EFG的法向量,则所以所以x=y=z,可取n=(1,1,1),所以d=,即点A到平面EFG的距离为.18双曲线方程为,离心率为【解析】试题分析:设所求双曲线方程为, 带入, 所求双曲线方程为, 又,离心率. 19. 解:由得,由题意得.命题p:.由的解集是,得无解,即对,恒成立,得.命题q:.由“p或q”为真命题,得p、q中至少有一个真命题.当p、q均为假命题,则,而.实数a的值取值范围是.20【解析】试题分析:设抛物线方程为,则焦点F(),由题意可得,解之得或, 故所求的抛物线方程为,21解: 如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系. ()依题意有,则,所以, ,即 ,.且故平面.又平面,所以平面平面. 6分(II)依题意有,=,=.设是平面的法向量,则 即因此可取 设是平面的法向量,则可取所以且由图形可知二面角为钝角故二面角的余弦值为 22【解析】因为点E在椭圆C上,所以2a=|EF1|+|EF2|=+=6,即a=3.在RtEF1F2中,|F1F2|=2,所以椭圆C的半焦距c=.因为b=2,所以椭圆C的方程为+=1.答案第5页,总6页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服