ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:48.50KB ,
资源ID:2311430      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2311430.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(BP-神经网络实例.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

BP-神经网络实例.doc

1、 运用Matlab创建BP神经网络(R2010b)   BP神经网络属于前向网络 以下为创建BP神经网络的方法及参数意义 (1)net=newff(P,T,S)或者net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) P:输入参数矩阵。(RxQ1) T:目标参数矩阵。(SNxQ2) S:N-1个隐含层的数目(S(i)到S(N-1

2、输出层的单元数目取决于T,默认为空矩阵。 TF:相关层的传递函数,默认隐含层为tansig函数,输出层为purelin函数。 BTF:BP神经网络学习训练函数,默认值为trainlm函数。 BLF:权重学习函数,默认值为learngdm。 PF:性能函数,默认值为mse。 IPF,OPF,DDF均为默认值即可。 (2)传递函数 purelin 线性传递函数 tansig 正切 S 型传递函数 logsig 对数 S 型传递函数 隐含层和输出层函数的选择对BP神经网络预测精度有较大影响,一般隐含层节点转移函数选用 tansig函数或logsig函数,输出层节点转移函数选

3、用tansig函数或purelin函数。 (3)学习训练函数 神经网络的学习分为有导师学习和无导师学习。 最速下降BP算法:traingd 动量BP算法:traingdm 学习率可变的BP算法:trainda(学习率可变的最速下降BP算法);traindx(学习率可变的动量BP算法) 弹性算法:trainrp 变梯度算法:traincgf(Fletcher-Reeves修正算法) traincgp(Polak_Ribiere修正算法) traincgb(Powell-Beale复位算法) trainbfg(BFGS 拟牛顿算法) trainoss(OSS算法) trai

4、nlm(LM算法) 参数说明:通过net.trainParam可以查看参数 Show Training Window Feedback showWindow: true Show Command Line Feedback showCommandLine: false Command Line Frequency show: 两次显示之间的训练次数 Maximum Epochs epochs: 训练次数 Maximum Training Time time: 最长训练时间(秒) Performance Goal goal: 网络性能目标 Minimum Gradient min

5、grad: 性能函数最小梯度 Maximum Validation Checks max_fail: 最大验证失败次数 Learning Rate lr: 学习速率 Learning Rate Increase lr_inc: 学习速率增长值 Learning Rate lr_dec: 学习速率下降值 Maximum Performance Increase max_perf_inc: Momentum Constant mc: 动量因子 (4)BP神经网络预测函数 SimOut = sim('model', Parameters) & y=sim(net,x) 函数功能:

6、用训练好的BP神经网络预测函数输出 net:训练好的网络 x:输入数据 y:网络预测数据 (5)训练函数 [net,tr] = train(Net,P,T,Pi,Ai) 其中, Net 待训练的网络 P 输入数据矩阵 T 输出数据矩阵 (default = zeros) Pi 初始化输入层条件 (default = zeros) Ai 初始化输出层条件 (default = zeros) net 训练好的网络 tr 训练过程记录 注意:P Ni-by-TS cell array Each element P{i,j,ts} is an Ni-by-Q matrix.

7、 T Nl-by-TS cell array Each element T{i,ts} is a Ui-by-Q matrix.   BP网络的常用函数表     函数类型   函数名称   函数用途   前向网络创建函数   newcf   创建级联前向网络   Newff   创建前向BP网络   传递函数   logsig   S型的对数函数   tansig   S型的正切函数   purelin   纯线性函数   学习函数   learngd   基于梯度下降法的学习函数   learngdm  

8、 梯度下降动量学习函数   性能函数   mse   均方误差函数   msereg   均方误差规范化函数     显示函数   plotperf   绘制网络的性能   plotes   绘制一个单独神经元的误差曲面   plotep   绘制权值和阈值在误差曲面上的位置   errsurf   计算单个神经元的误差曲面   范例 现给出一药品商店一年当中12个月的药品销售量(单位:箱)如下: 2056 2395 2600 2298 1634 1600 1873 1487 1900 1500 2046 1556 训练一个

9、BP网络,用当前的所有数据预测下一个月的药品销售量。 我们用前三个月的销售量预测下一个月的销售量,也就是用1-3月的销售量预测第4个月的销售量,用2-4个月的销售量预测第5个月的销售量,如此循环下去,直到用9-11月预测12月份的销售量。这样训练BP神经网络后,就可以用10-12月的数据预测来年一月的销售量。 实现程序如下: P =[2056 2395 2600;2395 2600 2298;2600 2298 1634;2298 1634 1600;... 1634 1600 1873;1600 1873 1478;1873 1478 1900;1478 1900 1500;...

10、 1900 1500 2046;]; T = [2298 1634 1600 1873 1487 1900 1500 2046 1556]; pmax = max(P); pmax1 = max(pmax); pmin = min(P); pmin1 = min(pmin); for i=1:9 P1(i,:)=(P(i,:)-pmin1)/(pmax1-pmin1); T1(i)=(T(i)-pmin1)/(pmax1-pmin1); end net = newff(P1',T1,[3 7],{'tansig' 'logsig'},'traingd'); for i =

11、 1:9 net.trainParam.epochs = 15000; net.trainParam.goal=0.01; net.trainParam.lr = 0.1 net = train(net,P1(i,:)',T1(i)); end y=sim(net,[1500 2046 1556]'); y1=y*(pmax1-pmin1)+pmin1;   如果神经网络的训练函数使用trainlm,则仿真步骤会很少,但需要较大的系统内存。 经预测,来年一月的销售量(y1)为1.6845e+003箱(每次运行后的结果可能不同)。 Welcome To Download !!! 欢迎您的下载,资料仅供参考! 精品资料

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服