1、用因式分解法解一元二次方程【主体知识归纳】1因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x290,这个方程可变形为(x3)(x3)0,要(x3)(x3)等于0,必须并且只需(x3)等于0或(x3)等于0,因此,解方程(x3)(x3)0就相当于解方程x30或x30了,通过解这两个一次方程就可得到原方程的解这种解一元二次方程的方法叫做因式分解法2因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程其理论根据是:若AB0A0或B0【基础知识讲解】1只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程分解因式时,要根据情
2、况灵活运用学过的因式分解的几种方法2在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便因此,在遇到一道题时,应选择适当的方法去解配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法【例题精讲】例1:用因式分解法解下列方程:(1)y27y60; (2)t(2t1)3(2t1); (3)(2x1)(x1)1解:(1)方程可变形为(y1)(y6)0,y10或y60,y11,y26(2)方程可变形为t
3、(2t1)3(2t1)0,(2t1)(t3)0,2t10或t30,t1,t23(3)方程可变形为2x23x0x(2x3)0,x0或2x30x10,x2说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了(2)应用因式分解法解形如(xa)(xb)c的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(xe)(xf)0的形式,这时才有x1e,x2f,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x11
4、或x11x11,x22(3)在方程(2)中,为什么方程两边不能同除以(2t1),请同学们思考?例2:用适当方法解下列方程:(1)(1x)2;(2)x26x190;(3)3x24x1;(4)y2152y;(5)5x(x3)(x3)(x1)0;(6)4(3x1)225(x2)2剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了解:(1)(1x)2,(x1)23,x1,x11,x21(2)移项,得x26x19,配方,得x26x(3)219(3)2,(x3)228,x32,x132,
5、x232(3)移项,得3x24x10,a3,b4,c1,x,x1,x2(4)移项,得y22y150,把方程左边因式分解,得(y5)(y3)0;y50或y30,y15,y23(5)将方程左边因式分解,得(x3)5x(x1)0,(x3)(4x1)0,x30或4x10,x13,x2(6)移项,得4(3x1)225(x2)20,2(3x1)25(x2)20,2(3x1)5(x2)2(3x1)5(x2)0,(11x8)(x12)0,11x80或x120,x1,x212说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简(2)直接因式分解就能转化成两个一次因式乘积等于零的形式
6、,对于这种形式的方程就不必要整理成一般式了例3:解关于x的方程:(a2b2)x24abxa2b2解:(1)当a2b20,即ab时,方程为4abx0当ab0时,x为任意实数当ab0时,x0(2)当a2b20,即ab0且ab0时,方程为一元二次方程分解因式,得(ab)x(ab)(ab)x(ab)0,ab0且ab0,x1,x2说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解本题实际上是分三种情况,即ab0;ab0;ab例4:已知x2xy2y20,且x0,y0,求代数式的值剖析:要求代数式的值,只要求出x、y的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x
7、、y的二次齐次式,所以知道x与y的比值也可由已知x2xy2y20因式分解即可得x与y的比值解:由x2xy2y20,得(x2y)(xy)0,x2y0或xy0,x2y或xy当x2y时,当xy时,说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用【同步达纲练习】1选择题(1)方程(x16)(x8)0的根是( )Ax116,x28Bx116,x28Cx116,x28Dx116,x28(2)下列方程4x23x10,5x27x20,13x215x20中,有一个公共解是( )AxBx2Cx1Dx1
8、(3)方程5x(x3)3(x3)解为( )Ax1,x23BxCx1,x23Dx1,x23(4)方程(y5)(y2)1的根为( )Ay15,y22By5Cy2D以上答案都不对(5)方程(x1)24(x2)20的根为( )Ax11,x25Bx11,x25Cx11,x25Dx11,x25(6)一元二次方程x25x0的较大的一个根设为m,x23x20较小的根设为n,则mn的值为( )A1B2C4D4(7)已知三角形两边长为4和7,第三边的长是方程x216x550的一个根,则第三边长是( )A5B5或11C6D11(8)方程x23|x1|1的不同解的个数是( )A0B1C2D32填空题(1)方程t(t3
9、)28的解为_(2)方程(2x1)23(2x1)0的解为_(3)方程(2y1)23(2y1)20的解为_(4)关于x的方程x2(mn)xmn0的解为_(5)方程x(x) x的解为_3用因式分解法解下列方程:(1)x212x0; (2)4x210; (3)x27x;(4)x24x210;(5)(x1)(x3)12;(6)3x22x10;(7)10x2x30;(8)(x1)24(x1)2104用适当方法解下列方程:(1)x24x30;(2)(x2)2256;(3)x23x10;(4)x22x30;(5)(2t3)23(2t3);(6)(3y)2y29;(7)(1)x2(1)x0;(8)x2(51)
10、x0;(9)2x28x7(精确到001);(10)(x5)22(x5)805解关于x的方程:(1)x24ax3a212a;(2)x25xk22kx5k6;(3)x22mx8m20; (4)x2(2m1)xm2m06已知x23xy4y20(y0),试求的值7已知(x2y2)(x21y2)120求x2y2的值8请你用三种方法解方程:x(x12)8649已知x23x5的值为9,试求3x29x2的值10一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h5(t2)(t1)求运动员起跳到入水所用的时间11为解方程(x21)25(x21)40,我们可以将x21视为
11、一个整体,然后设x21y,则y2(x21)2,原方程化为y25y40,解此方程,得y11,y24当y1时,x211,x22,x当y4时,x214,x25,x原方程的解为x1,x2,x3,x4以上方法就叫换元法,达到了降次的目的,体现了转化的思想(1)运用上述方法解方程:x43x240(2)既然可以将x21看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2(1)t17,t24(2)x1,x22(3)y11,y2(4)x1m,x2n(5)x1,x213(1)x10,x212;(2)x1,x2;(
12、3)x10,x27;(4)x17,x23;(5)x15,x23;(6)x11,x2;(7)x1,x2;(8)x18,x224(1)x11,x23;(2)x118,x214;(3)x1,x2;(4)x13,x21;(5)t10,t2;(6)y10,y23;(7)x10,x223;(8)x1,x2;(9)x17.24,x23.24;(10)x11,x275(1)x24ax4a2a22a1,(x2a)2(a1)2,x2a(a1),x13a1,x2a1(2)x2(52k)xk25k60,x2(52k)x(k1)(k6)0,x(k1)x(k6)0,x1k1,x2(k6)(3)x22mxm29m2,(xm)2(3m)2x14m,x22m(4)x2(2m1)xm(m1)0,(xm)x(m1)0,x1m,x2m16(x4y)(xy)0,x4y或xy当x4y时,;当xy时,07(x2y2)(x2y21)120,(x2y2)2(x2y2)120,(x2y24)(x2y23)0,x2y24或x2y23(舍去)8x136,x2249x23x59,x23x4,3x29x23(x23x)23421010105(t2)(t1),t1(t0舍去)11(1)x12,x22(2)(x22)(x25)0,(x)(x)(x)(x)0- 8 -
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100