1、(完整word版)新浙教版八年级上数学期中考试试题及答案新浙教版八上数学期中考试一、选择题(每小题3分,共30分)1已知在ABC中,AB=AC,A=56,则高BD与BC的夹角为( )A28 B34 C68 D622在ABC中,AB=3,AC=4,延长BC至D,使CD=BC,连接AD,则AD的长的取值范围为( )A1AD7 B2AD14 C2.5AD5.5 D5AD113如图,在ABC中,C=90,CA=CB,AD平分CAB交BC于D,DEAB于点E,且AB=6,则DEB的周长为( )A4 B6 C8 D10(第4题)4用直尺和圆规作一个角等于已知角的示意图如下,则说明AOBAOB的依据是A(S
2、SS)B(SAS)C(ASA)D(AAS (第13题) (第13题)5. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.=60,的补角=120, B.=90,的补角=900,= C.=100,的补角=80, D.两个角互为邻补角 (第3题)6. ABC与ABC中,条件AB= AB,BC= BC,AC =AC,A=A,B=B,C=C,则下列各组条件中不能保证ABCABC的是( ) A. B. C. D. 7如图,在ABC中,AB=AC,高BD,CE交于点O,AO交BC于点F,则图中共有全等三角形( )A7对 B6对 C5对 D4对8如图,在ABC中,C=90,AC=B
3、C,AD平分BAC交BC于点D,DEAB于点E,若DEB的周长为10cm,则斜边AB的长为( )A8 cm B10 cm C12 cm D 20 cm9如图,ABC与BDE均为等边三角形,ABBD,若ABC不动,将BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为( )AAE=CD BAECD CAECD D无法确定10已知P=80,过不在P上一点Q作QM,QN分别垂直于P的两边,垂足为M,N,则Q的度数等于( )ECDBAA10 B80 C100 D80或100一、填空题(每小题2分,共20分)11.如图,ABCDEB,AB=DE,E=ABC,则C的对应角为 ,BD的对应边为 .DAB
4、CEDABC12BDAC12.如图,AD=AE,1=2,BD=CE,则有ABD ,理由是 ,ABE ,理由是 .BAEDC (第1题) (第2题) (第4题)13.已知ABCDEF,BC=EF=6cm,ABC的面积为18平方厘米,则EF边上的高是 cm.14.如图,AD、AD分别是锐角ABC和ABC中BC与BC边上的高,且AB= AB,AD= AD,若使ABCABC,请你补充条件 (只需填写一个你认为适当的条件)15. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合.16. 如图,有两个长度相同的滑梯(即BCEF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则
5、ABCDFE_度 (第16题) (第17题) (第18题)17已知:如图,正方形ABCD的边长为8,M在DC上,且DM2,N是AC上的一动点,则DNMN的最小值为_18如图,在ABC中,B90o,D是斜边AC的垂直平分线与BC的交点,连结AD,若 DAC:DAB2:5,则DAC_19等腰直角三角形ABC中,BAC90o,BD平分ABC交AC于点D,若ABAD8cm,则底边BC上的高为_20锐角三角形ABC中,高AD和BE交于点H,且BHAC,则ABC_度 (第19题) (第20题) 三、解答题(每小题5分,共30分)21.如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,
6、并给予证明.所添条件为 ,你得到的一对全等三角形是 . 22.如图,EGAF,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.AB=AC,DE=DF,BE=CF,已知:EGAF, = , = ,求证: 证明: (第22题)23. 如图,在ABC和DEF中,B、E、C、F在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. AB=DE,AC=DF,ABC=DEF,BE=CF (第23题)24. 如图,四边形ABCD中,点E在边CD上.连结AE、BF,给出下列五个关系式:ADBC;DE=
7、CE . 1=2 . 3=4 . AD+BC=AB将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果,那么,并给出证明;(2)用序号再写出三个真命题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题 EAB DFC25.已知,如图,D是ABC的边AB上一点,DF交AC于点E, DE=FE, ABFC. 问线段AD、CF的长度关系如何?请予以证明. (第25题)26.如图,已知ABC是等腰直角三角形,C=90.(1)操作并观察,如图,将三角板的45角的顶点与点C重合,使这个角落在ACB的内部,两边分别与斜边AB交于E、F两
8、点,然后将这个角绕着点C在ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(2)如图,在ABC中,如果ACB不是直角,而(1)中
9、的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.OPAMNEBCDFACEFBD图图图28.如图a,ABC和CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE. (1)线段AF和BE有怎样的大小关系?请证明你的结论; (2)将图a中的CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a中的ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由; (4)根据以上证明、说理、画图,归纳你的发现). 图a 图b参考答案一、1.DBE,
10、CA 2.ACE, SAS, ACD, ASA(或SAS)3. 64.CD=CD(或AC=AC,或C=C或CAD=CAD)5.平移,翻折 6. 907. 10 8. 20 9. 10. 45 二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择等条件中的一个.可得到ACEADE或ACBADB等. 22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系可选AB=AC,DE=DF,作为已知条件,BE=CF作为结论;推理过程为:EGAF,GED=CFD,BGE=BCA,AB=AC,B=BCA,B=BGEBE=
11、EG,在DEG和DFC中,GED=CFD,DE=DF,EDG=FDC,DEGDFC,EG=CF,而EG=BE,BE=CF;若选AB=AC,BE=CF为条件,同样可以推得DE=DF, 23.结合图形,认真分析所供选择的4个论断之间的内在联系由BE=CF还可推得BC=EF,根据三角形全等的判定方法,可选论断:AB=DE,AC=DF,BE=CF为条件,根据三边对应相等的两个三角形全等可以得到:ABCDEF,进而推得论断ABC=DEF,同样可选AB=DE,ABC=DEF,BE=CF为条件,根据两边夹角对应相等的两个三角形全等可以得到:ABCDEF,进而推得论断AC=DF.24. (1)如果,那么证明:
12、如图,延长AE交BC的延长线于F 因为ADBC 所以 1=F又因为AED =CEF ,DE=EC所以ADE FCE,所以AD=CF,AE=EF因为1=F ,1=2 所以2=F所以AB=BF.所以3=4 所以AD+BC=CF+BC=BF=AB(2)如果,那么;如果,那么;如果,那么.(3) 如果,那么;如果,那么;如果,那么.25. (1)观察结果是:当45角的顶点与点C重合,并将这个角绕着点C在重合,并将这个角绕着点C在ACB内部旋转时,AE、EF、FB中最长的线段始终是EF.(2)AE、EF、FB三条线段能构成以EF为斜边的直角三角形,证明如下:在ECF的内部作ECG=ACE,使CG=AC,
13、连结EG,FG,ACEGCE,A=1,同理B=2,A+B=90,1+2=90,EGF=90,EF为斜边.四、27.(1)FE与FD之间的数量关系为FE=FD(2)答:(1)中的结论FE=FD仍然成立 图 图证法一:如图1,在AC上截取AG=AE,连接FG 1=2,AF=AF,AE=AG AEFAGF AFE=AFG,FG=FE B=60,且AD、CE分别是BAC、BCA的平分线 2+3=60,AFE=CFD=AFG=60 CFG=60 4=3,CF=CF,图 CFGCFD FG=FD FE=FD证法二:如图2,过点F分别作FGAB于点G,FHBC于点H B=60,且AD、CE分别是BAC、BC
14、A的平分线 2+3=60 GEF=60+1,FG=FH HDF=B+1 GEF=HDF EGFDHF FE=FD28. (1)AF=BE. 证明:在AFC和BEC中,ABC和CEF是等边三角形,AC=BC,CF=CE,ACF=BCE=60.AFCBEC. AF=BE. (2)成立. 理由:在AFC和BEC中, ABC和CEF是等边三角形, AC=BC,CF=CE,ACB=FCE=60. ACB-FCB=FCE-FCB. 即ACF=BCE. AFCBEC. AF=BE.(3)此处图形不惟一,仅举几例. 如图,(1)中的结论仍成立. (4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.第10页 共10页
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100