ImageVerifierCode 换一换
格式:PPT , 页数:28 ,大小:469.50KB ,
资源ID:2292100      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2292100.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(第三章应变状态-PPT.ppt)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第三章应变状态-PPT.ppt

1、第三章第三章 应应 变变物体变形位移与应变的基本关系几何方程应变状态分析位移的单值连续性质 目录目录3.1 3.1 变形与应变概念变形与应变概念3.2 3.2 主应变与主应变方主应变与主应变方向向3.3 3.3 应变协调方程应变协调方程3.1 变形与应变概念变形与应变概念 由于外部因素由于外部因素 物体内部各点空间位置发生变化物体内部各点空间位置发生变化 位移形式位移形式刚体位移:物体内部各点位置变化,但仍保物体内部各点位置变化,但仍保持初始状态相对位置不变持初始状态相对位置不变。变形位移:位移不仅使得位置改变,而且改位移不仅使得位置改变,而且改变了物体内部各个点的相对位置。变了物体内部各个点

2、的相对位置。载荷或温度变化载荷或温度变化位移位移u,v,w是是单值连续函数进一步分析位移函数具有连续的三阶导数进一步分析位移函数具有连续的三阶导数一点的变形通过通过微分六面体单元描述描述微分单元体的变形,分为两部分讨论微分单元体的变形,分为两部分讨论正应变棱边的伸长和缩短棱边的伸长和缩短 切应变棱边之间夹角(直角)改变棱边之间夹角(直角)改变3.1 变形变形2几何方程 位移分量和应变分量之间的关系 几何方程又称又称柯西方程微分线段伸长微分线段伸长正应变大于零正应变大于零微分线段夹角缩小微分线段夹角缩小切应变分量大于零切应变分量大于零3.1 变形变形3几何方程几何方程位移导数表示的应变位移导数表

3、示的应变应变描述一点的变形,但还不足以完全描述应变描述一点的变形,但还不足以完全描述弹性体的变形弹性体的变形原因是没有考虑单元体位置的改变原因是没有考虑单元体位置的改变单元体的单元体的刚体转动 刚性位移可以分解为平动与转动刚性位移可以分解为平动与转动刚性转动刚性转动变形位移的一部分变形位移的一部分,但是不产,但是不产生变形。生变形。3.1 变形变形4微分单元体的刚性转动与协调相关转动矢量描述微分单元体的刚性转动 转动分量 刚体转动位移增量变形位移增量位移增量是由两部分组成的3.1 变形变形5变形通过应变描述变形通过应变描述 坐标变换时,应变分量坐标变换时,应变分量随坐标转动而变化随坐标转动而变

4、化。应变分量的转轴公式应变分量的转轴公式应变张量3.2 主应变与主应变方向主应变与主应变方向应变状态应变张量一旦确定,则任意坐标系下的应变应变张量一旦确定,则任意坐标系下的应变分量均可确定。因此应变状态就完全确定。分量均可确定。因此应变状态就完全确定。坐标变换后各应变分量均发生改变,但作为坐标变换后各应变分量均发生改变,但作为一个整体,所描述的应变状态并未改变一个整体,所描述的应变状态并未改变。主应变与与应变主轴 切应变为切应变为0的方向的方向 应变主轴方向的正应变应变主轴方向的正应变应变主轴主应变3.2 主应变主应变2应变状态特征方程l,m,n齐次线性方程组非零解的条件为方程系数行列式的值为

5、零 展开 3.2 主应变主应变3主应变确定主应变确定应变主轴方向变形应变主轴方向变形应变不变量第一,第二和第三应变不变量 一点的应变状态与坐标系选取无关,因此坐一点的应变状态与坐标系选取无关,因此坐标变换不影响应变状态是确定的。标变换不影响应变状态是确定的。应变不变量就是应变状态性质的表现应变不变量就是应变状态性质的表现3.2 主应变主应变4应力张量应力张量应变张量应变张量应力不变量应力不变量应变不变量应变不变量主应变和应变主轴与主应力和应力主轴的特性主应变和应变主轴与主应力和应力主轴的特性类似类似各向同性材料,应力主轴和应变主轴是重合的各向同性材料,应力主轴和应变主轴是重合的公式比较公式比较

6、3.2 主应变主应变5体积应变弹性体一点体积的改变量引入体积应变有助于 简化公式3.2 主应变主应变63.3 应变协调方程应变协调方程数学意义:几何方程几何方程6个应变分量通过个应变分量通过3个位移分量个位移分量描述描述力学意义变形连续变形连续弹性体任意一点的变形必须受到其相邻单元弹性体任意一点的变形必须受到其相邻单元体变形的约束体变形的约束例例3-1 设 ex=3x,ey=2y,gxy=xy,ez=gxz=gyz=0,求其位移。解解:显然,该应变没有对应的位移。显然,该应变没有对应的位移。如果通过几何方程求解位移,则六个应变分如果通过几何方程求解位移,则六个应变分量必须满足一定的条件。量必须

7、满足一定的条件。3.3 应变协调应变协调2l要使几何方程求解位移时方程组不矛盾,要使几何方程求解位移时方程组不矛盾,则六个应变分量必须满足一定的条件。则六个应变分量必须满足一定的条件。l从几何方程中消去位移分量,第一式和第从几何方程中消去位移分量,第一式和第二式分别对二式分别对y和和 x求二阶偏导数,然后相加求二阶偏导数,然后相加可得可得3.3 应变协调应变协调3u将几何方程的四,五,六式分别对z,x,y求一阶偏导数u前后两式相加并减去中间一式,则对x求一阶偏导数,则 分别轮换x,y,z,则可得如下六个关系式 3.3 应变协调应变协调4u将几何方程的四,五,六式分别对将几何方程的四,五,六式分

8、别对z,x,y求一阶偏导数求一阶偏导数u前后两式相加并减去中间一式,则前后两式相加并减去中间一式,则应变协调方程圣维南 (Saint Venant)方程 3.3 应变协调应变协调5变形协调方程的数学意义变形协调方程的数学意义使使3 3个位移为未知函数的六个几何方程不相个位移为未知函数的六个几何方程不相矛盾。矛盾。变形协调方程的物理意义变形协调方程的物理意义物体变形后每一单元体都发生形状改变,如物体变形后每一单元体都发生形状改变,如变形不满足一定的关系,变形后的单元体将变形不满足一定的关系,变形后的单元体将不能重新组合成连续体,其间将产生缝隙或不能重新组合成连续体,其间将产生缝隙或嵌入现象。嵌入

9、现象。为使变形后的物体保持连续体,应变分量必为使变形后的物体保持连续体,应变分量必须满足一定的关系。须满足一定的关系。3.3 应变协调应变协调6证明应变协调方程是变形连续的必要和充分条件。变形连续的物理意义,反映在数学上则要求位移分量为单值连续函数。目标如果应变分量满足应变协调方程,则对于单连通域,就可以通过几何方程积分求得单值连续的位移分量。利用位移和转动分量的全微分,则轮换x,y,z,可得du,dv和dwy,dwz 3.3 应变协调应变协调7如通过积分,计算出 是单值连续的,则问题可证。保证单值连续的条件是积分与积分路径无关 3.3 应变协调应变协调8根据格林公式回代3.3 应变协调应变协

10、调9回代到第四式 wx单值连续的必要与充分条件是 同理讨论wy,wz的单值连续条件,可得其它4式变形协调方程。由此可证变形协调方程是单连通域位移单值连续的必要和充分条件。3.3 应变协调应变协调10变形协调方程变形协调方程单连通域位移单值连续的必要和充分条件单连通域位移单值连续的必要和充分条件多连通域位移单值连续的必要条件多连通域位移单值连续的必要条件充分条件是位移的连续补充条件充分条件是位移的连续补充条件3.3 应变协调应变协调11位移边界条件位移边界条件 q应变满足变形协调方程,保证弹性体内部应变满足变形协调方程,保证弹性体内部的变形单值连续。的变形单值连续。q边界变形协调要求边界位移满足

11、位移边界边界变形协调要求边界位移满足位移边界条件。条件。q位位移移边边界界条条件件临临近近表表面面的的位位移移或或和和变变形与已知边界位移或变形相等。形与已知边界位移或变形相等。3.3 应变协调应变协调12如果物体表面的位移已知,称为位移边界如果物体表面的位移已知,称为位移边界位移边界用位移边界用Su表示。表示。如果物体表面的位移如果物体表面的位移 已知边界条件为称为位移边界条件3.3 应变协调应变协调13设物体表面为S位移已知边界Su面力已知边界Ss则 SSuSs弹性体的整个边界,是由面力边界和位移边弹性体的整个边界,是由面力边界和位移边界构成的。界构成的。任意一段边界,可以是面力边界,或者位移任意一段边界,可以是面力边界,或者位移边界。边界。面力边界和位移边界在一定条件下是可以转面力边界和位移边界在一定条件下是可以转换的,例如静定问题。换的,例如静定问题。3.3 应变协调应变协调14某些问题,边界部分位移已知,另一部分面力已知,这种边界条件称为混合边界条件。不论是面力边界条件,位移边界条件,还是混合边界条件,弹性体任意边界的边界条件数目不能超过或者少于3个,必须等于3个。3.3 应变协调应变协调15

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服