ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:20.62KB ,
资源ID:2287609      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2287609.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(双曲线及其标准方程测试题及解析人教版.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

双曲线及其标准方程测试题及解析人教版.doc

1、双曲线及其标准方程测试题及解析(人教版)2.2双曲线2.2.1双曲线及其标准方程课时目标1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题1双曲线的有关概念(1)双曲线的定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于_)的点的轨迹叫做双曲线平面内与两个定点F1,F2的距离的差的绝对值等于|F1F2|时的点的轨迹为_平面内与两个定点F1,F2的距离的差的绝对值大于|F1F2|时的点的轨迹_(2)双曲线的焦点和焦距双曲线定义中的两个定点F1、F2叫做_,两焦点间的距离叫做_2双曲线的标准方程(1)焦点在x

2、轴上的双曲线的标准方程是_,焦点F1_,F2_.(2)焦点在y轴上的双曲线的标准方程是_,焦点F1_,F2_.(3)双曲线中a、b、c的关系是_一、选择题1已知平面上定点F1、F2及动点M,命题甲:|MF1|MF2|2a(a为常数),命题乙:M点轨迹是以F1、F2为焦点的双曲线,则甲是乙的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2若ax2by2b(ab0),则这个曲线是()A双曲线,焦点在x轴上B双曲线,焦点在y轴上C椭圆,焦点在x轴上D椭圆,焦点在y轴上3焦点分别为(2,0),(2,0)且经过点(2,3)的双曲线的标准方程为()Ax2y231B.x23y21Cy2

3、x231Dx22y2214双曲线x2my23m1的一个焦点为(2,0),则m的值为()A12B1或3C122D2125一动圆与两圆:x2y21和x2y28x120都外切,则动圆圆心的轨迹为()A抛物线B圆C双曲线的一支D椭圆6已知双曲线中心在坐标原点且一个焦点为F1(5,0),点P位于该双曲线上,线段PF1的中点坐标为(0,2),则该双曲线的方程是()Ax24y21Bx2y241Cx22y231Dx23y221题号123456答案二、填空题7设F1、F2是双曲线x24y21的两个焦点,点P在双曲线上,且PF1PF20,则|PF1|PF2|_.8已知方程x21ky21k1表示双曲线,则k的取值范

4、围是_9F1、F2是双曲线x29y2161的两个焦点,P在双曲线上且满足|PF1|PF2|32,则F1PF2_.三、解答题10设双曲线与椭圆x227y2361有相同的焦点,且与椭圆相交,一个交点A的纵坐标为4,求此双曲线的标准方程11在ABC中,B(4,0)、C(4,0),动点A满足sinBsinC12sinA,求动点A的轨迹方程能力提升12若点O和点F(2,0)分别为双曲线x2a2y21(a0)的中心和左焦点,点P为双曲线右支上的任意一点,则OPFP的取值范围为()A323,)B323,)C74,)D74,)13已知双曲线的一个焦点为F(7,0),直线yx1与其相交于M,N两点,MN中点的横

5、坐标为23,求双曲线的标准方程1双曲线的标准方程可以通过待定系数法求得2和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合3直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决2.2双曲线22.1双曲线及其标准方程答案知识梳理1(1)|F1F2|以F1,F2为端点的两条射线不存在(2)双曲线的焦点双曲线的焦距2(1)x2a2y2b21(a0,b0)(c,0)(c,0)(2)y2a2x2b21(a0,b0)(0,c)(0,c)(3)c2a2b2作业设计1B根据双曲线的定义,乙⇒甲,但甲乙,只有当2a|F1F2|且a0时,其轨迹

6、才是双曲线2B原方程可化为x2bay21,因为ab0,所以ba0,所以曲线是焦点在y轴上的双曲线,故选B.3A双曲线的焦点在x轴上,设双曲线方程为x2a2y2b21(a0,b0)由题知c2,a2b24.又点(2,3)在双曲线上,22a232b21.由解得a21,b23,所求双曲线的标准方程为x2y231.4A双曲线的焦点为(2,0),在x轴上且c2,m3mc24.m12.5C由题意两定圆的圆心坐标为O1(0,0),O2(4,0),设动圆圆心为O,动圆半径为r,则|OO1|r1,|OO2|r2,|OO2|OO1|1|O1O2|4,故动圆圆心的轨迹为双曲线的一支6B设双曲线方程为x2a2y2b21

7、,因为c5,c2a2b2,所以b25a2,所以x2a2y25a21.由于线段PF1的中点坐标为(0,2),则P点的坐标为(5,4)代入双曲线方程得5a2165a21,解得a21或a225(舍去),所以双曲线方程为x2y241.故选B.72解析|PF1|PF2|4,又PF1PF2,|F1F2|25,|PF1|2|PF2|220,(|PF1|PF2|)2202|PF1|PF2|16,|PF1|PF2|2.81k1解析因为方程x21ky21k1表示双曲线,所以(1k)(1k)0.所以(k1)(k1)0.所以1k1.990解析设F1PF2,|PF1|r1,|PF2|r2.在F1PF2中,由余弦定理,得

8、(2c)2r21r222r1r2cos,cos(r1r2)22r1r24c22r1r23664100640.90.10解方法一设双曲线的标准方程为y2a2x2b21(a0,b0),由题意知c236279,c3.又点A的纵坐标为4,则横坐标为15,于是有42a2(15)2b21,a2b29,解得a24,b25.所以双曲线的标准方程为y24x251.方法二将点A的纵坐标代入椭圆方程得A(15,4),又两焦点分别为F1(0,3),F2(0,3)所以2a|(150)2(43)2(150)2(43)2|4,即a2,b2c2a2945,所以双曲线的标准方程为y24x251.11解设A点的坐标为(x,y),

9、在ABC中,由正弦定理,得asinAbsinBcsinC2R,代入sinBsinC12sinA,得|AC|2R|AB|2R12|BC|2R,又|BC|8,所以|AC|AB|4.因此A点的轨迹是以B、C为焦点的双曲线的右支(除去右顶点)且2a4,2c8,所以a2,c4,b212.所以A点的轨迹方程为x24y2121(x2)12B由c2得a214,a23,双曲线方程为x23y21.设P(x,y)(x3),OPFP(x,y)(x2,y)x22xy2x22xx23143x22x1(x3)令g(x)43x22x1(x3),则g(x)在3,)上单调递增g(x)ming(3)323.OPFP的取值范围为323,)13解设双曲线的标准方程为x2a2y2b21,且c7,则a2b27.由MN中点的横坐标为23知,中点坐标为23,53.设M(x1,y1),N(x2,y2),则由x21a2y21b21,x22a2y22b21,得b2(x1x2)(x1x2)a2(y1y2)(y1y2)0.x1x243y1y2103,且y1y2x1x21,2b25a2.由,求得a22,b25.所求双曲线的标准方程为x22y251.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服