ImageVerifierCode 换一换
格式:DOC , 页数:32 ,大小:2.67MB ,
资源ID:2287168      下载积分:9 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2287168.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高等数学空间解析几何与向量代数.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高等数学空间解析几何与向量代数.doc

1、32第七章 空间解析几何与向量代数第一节 空间直角坐标系教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式教学难点:空间思想的建立教学内容:一、空间直角坐标系1将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图71,其符合右手规则。即以右手握住轴,当右手的四个手指从正向轴以角度转向正向轴时,大拇指的指向就是轴的正向。2 间直角坐标系共有八个卦限,各轴名称分别为:轴、轴、轴,坐标面分别为面、面、面。坐标面以及卦限的划分如图72所示。图71右手规则演示 图72空间直角坐标系图 图7

2、3空间两点的距离图3空间点的坐标表示方法。通过坐标把空间的点与一个有序数组一一对应起来。注意:特殊点的表示a)在原点、坐标轴、坐标面上的点;b)关于坐标轴、坐标面、原点对称点的表示法。4空间两点间的距离。 若、为空间任意两点, 则的距离(见图73),利用直角三角形勾股定理为:而 所以特殊地:若两点分别为,例1:求证以、三点为顶点的三角形是一个等腰三角形。证明: 由于 ,原结论成立。例2:设在轴上,它到的距离为到点的距离的两倍,求点的坐标。解:因为在轴上,设P点坐标为 所求点为:,小结:空间直角坐标系(轴、面、卦限)空间两点间距离公式作业:第二节 向量及其运算教学目的:使学生对(自由)向量有初步

3、了解,为后继内容的学习打下基础。教学重点:1.向量的概念2.向量的运算教学难点:向量平行与垂直的关系教学内容:一、向量的概念1向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。2 量的表示方法有: 、等等。3 向量相等:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。4 量的模:向量的大小,记为、。模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。5 量平行:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。6 负向量:大小相等但方向相反

4、的向量,记为二、向量的运算1加减法: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图742 即3向量与数的乘法:设是一个数,向量与的乘积规定为时,与同向,时,时,与反向,其满足的运算规律有:结合率、分配率。设表示与非零向量同方向的单位向量,那么定理1:设向量a0,那么,向量b平行于的充分必要条件是:存在唯一的实数,使b例1:在平行四边形ABCD中,设,试用和b表示向量、和,这里M是平行四边形对角线的交点。(见图75) 图74解:,于是由于, 于是又由于,于是由于, 于是小结:本节讲述了空间解析几何的重要性以及向量代数的初步知识,引导学生对向量(自由向量

5、)有清楚的理解,并会进行相应的加减、乘数、求单位向量等向量运算。作业:第三节 向量的坐标教学目的:进一步介绍向量的坐标表示式、为空间曲面等相关知识打好基础。教学重点:1.向量的坐标表示式 2.向量的模与方向余弦的坐标表示式教学难点:1.向量的坐标表示 2.向量的模与方向余弦的坐标表示式教学内容:一、向量在轴上的投影1几个概念(1) 轴上有向线段的值:设有一轴,是轴上的有向线段,如果数满足,且当与轴同向时是正的,当与轴反向时是负的,那么数叫做轴上有向线段的值,记做AB,即。设e是与轴同方向的单位向量,则(2) 设A、B、C是u轴上任意三点,不论三点的相互位置如何,总有(3) 两向量夹角的概念:设

6、有两个非零向量和b,任取空间一点O,作,规定不超过的称为向量和b的夹角,记为(4) 空间一点A在轴上的投影:通过点A作轴的垂直平面,该平面与轴的交点叫做点A在轴上的投影。(5) 向量在轴上的投影:设已知向量的起点A和终点B在轴上的投影分别为点和,那么轴上的有向线段的值叫做向量在轴上的投影,记做。2投影定理性质1:向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦:性质2:两个向量的和在轴上的投影等于两个向量在该轴上的投影的和,即 性质3:向量与数的乘法在轴上的投影等于向量在轴上的投影与数的乘法。即二、向量在坐标系上的分向量与向量的坐标1向量在坐标系上的分向量与向量的坐标通过坐标法,使平面上或

7、空间的点与有序数组之间建立了一一对应关系,同样地,为了沟通数与向量的研究,需要建立向量与有序数之间的对应关系。设a =是以为起点、为终点的向量,i、j、k分别表示 图75沿x,y,z轴正向的单位向量,并称它们为这一坐标系的基本单位向量,由图75,并应用向量的加法规则知:i + j+k或a = ax i + ayj + azk上式称为向量a按基本单位向量的分解式。有序数组ax、ay、az与向量a一一对应,向量a在三条坐标轴上的投影ax、ay、az就叫做向量a的坐标,并记为 a ax,ay,az。上式叫做向量a的坐标表示式。于是,起点为终点为的向量可以表示为特别地,点对于原点O的向径注意:向量在坐

8、标轴上的分向量与向量在坐标轴上的投影有本质区别。向量a在坐标轴上的投影是三个数ax、ay、az,向量a在坐标轴上的分向量是三个向量ax i 、 ayj 、 azk.2向量运算的坐标表示设,即,则(1) 加法: 减法: 乘数: 或 平行:若a0时,向量相当于,即也相当于向量的对应坐标成比例即三、向量的模与方向余弦的坐标表示式设,可以用它与三个坐标轴的夹角(均大于等于0,小于等于)来表示它的方向,称为非零向量a的方向角,见图76,其余弦表示形式称为方向余弦。1 模2 方向余弦由性质1知,当时,有 任意向量的方向余弦有性质: 与非零向量a同方向的单位向量为:3 例子:已知两点M1(2,2,)、M2(

9、1,3,0),计算向量的模、方向余弦、方向角以及与同向的单位向量。解:1-2,3-2,0-=-1,1,-,设为与同向的单位向量,由于即得小结:本节介绍了向量在轴上的投影与投影定理、向量在坐标轴上的分向量与向量的坐标(注意分向量与向量的坐标的区别)、向量的模与方向余弦的坐标表示式等概念。作业:第四节 数量积向量积教学目的:让学生搞清楚数量积与向量积的概念及其应用,掌握向量平行、垂直等重要的结论,为空间曲面等相关知识打好基础。教学重点:1. 数量积、向量积的概念及其等价的表示形式 2.向量平行、垂直的应用 教学难点:1.活学活用数量积、向量积的各种形式 2.向量平行与垂直的相应结论教学内容:一、数

10、量积:a) 定义:,式中为向量a与b的夹角。b) 物理上:物体在常力F作用下沿直线位移s,力F所作的功为其中为F与s的夹角。c) 性质:.两个非零向量a与b垂直的充分必要条件为:. . . 为数d) 几个等价公式:.坐标表示式:设,则.投影表示式:.两向量夹角可以由式求解e) 例子:已知三点M(1,1,1)、A(2,2,1)和B(2,1,2),求提示:先求出向量及,应用上求夹角的公式。二、向量积:a) 概念:设向量是由向量a与b按下列方式定义:的模,式中为向量a与b的夹角。 的方向垂直与a与b的平面,指向按右手规则从a转向b。注意:数量积得到的是一个数值,而向量积得到的是向量。b) 公式:f)

11、 性质:.两个非零向量a与b平行ab的充分必要条件为:. . . 为数c) 几个等价公式:.坐标表示式:设,则.行列式表示式:d) 例子:已知三角形ABC的顶点分别为:A(1,2,3)、B(3,4,5)和C(2,4,7),求三角形ABC的面积。解:根据向量积的定义,由于2,2,2,1,2,4因此于是小结: 向量的数量积(结果是一个数量)向量的向量积(结果是一个向量)(注意共线、共面的条件)作业:第五节 曲面及其方程教学目的:介绍各种常用的曲面,为下学期学习重积分、线面积分打下基础。学生应该会写出常用的曲面方程,并对已知曲面方程能知道所表示曲面的形状。教学重点:1.球面的方程 2.旋转曲面的方程

12、教学难点:旋转曲面 教学内容:一、曲面方程的概念1. 实例:水桶的表面、台灯的罩子面等,曲面在空间解析几何中被看成是点的几何轨迹。2. 曲面方程的定义:如果曲面S与三元方程(1)有下述关系:(1) 曲面上任一点的坐标都满足方程(1)(2) 不在曲面上的点的坐标都不满足方程(1)那么,方程(1)就叫做曲面的方程,而曲面就叫做方程(1)的图形。3几种常见曲面(1)球面例1:建立球心在、半径为R的球面的方程。 解:设是球面上的任一点,那么即:或:特别地:如果球心在原点,那么球面方程为(讨论旋转曲面)(2)线段的垂直平分面(平面方程)例2:设有点和,求线段的垂直平分面的方程。 解:由题意知道,所求平面

13、为与和等距离的点的轨迹,设是所求平面上的任一点,由于,那么化简得所求方程研究空间曲面有两个基本问题:(1) 已知曲面作为点的轨迹时,求曲面方程。(2)已知坐标间的关系式,研究曲面形状。i. 旋转曲面定义:以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面叫做旋转曲面,旋转曲线和定直线依次叫旋转曲面的母线和轴。二、旋转曲面的方程设在yoz坐标面上有一已知曲线C,它的方程为f(y,z)0把这曲线绕z轴旋转一周,就得到一个以z轴为轴的旋转曲面,设为曲线C上的任一点,那么有f(y1,z1)0(2)当曲线C绕z轴旋转时,点M1也绕z轴旋转到另一点,这时zz1保持不变,且点M到z轴的距离将z1z,代入(2)式,就有螺旋曲面的方程为旋转曲面图绕哪个轴旋转,该变量不变,另外的变量将缺的变量补上改成正负二者的完全平方根的形式。常用旋转曲面:锥面(直线绕直线旋转,两直线的夹角(00)双曲抛物面(鞍形曲面)方程为(p与q同号)当p 0, q 0时,其形状如图所示。2双曲面单叶双曲面方程为双叶双曲面方程为各种图形注意规律特点,可以写出其它的方程表达式。小结:通过本节的学习,学生能够知道方程对应的图形形状,并利用截痕法简单地描出图形,是下册重积分、线面积分的基础。作业:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服