ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:1.34MB ,
资源ID:2273466      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2273466.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高二数学圆锥曲线测试题以及详细答案.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高二数学圆锥曲线测试题以及详细答案.doc

1、圆锥曲线测试题及详细答案一、 选择题:1、双曲线的焦距为( )A. 3B. 4C. 3D. 42.椭圆的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则= ( )A B C D43已知动点的坐标满足方程,则动点的轨迹是()A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对4设P是双曲线上一点,双曲线的一条渐近线方程为、F2分别是双曲线的左、右焦点,若,则( ) A. 1或5 B. 1或9 C. 1 D. 95、设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,则椭圆的离心率是( ). A. B. C. D. 6双曲线

2、离心率为2,有一个焦点与抛物线的焦点重合,则mn的值为( )A B C D7. 若双曲线的左焦点在抛物线y2=2px的准线上,则p的值为 ( )(A)2 (B)3(C)4 (D)4 8如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是( )AB C D9、无论为何值,方程所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对10方程与的曲线在同一坐标系中的示意图应是( ) A B C D11.以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是( )A. B. C . D. 12已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线的焦点重合,则此椭圆方程为( )A

3、 B C D二、填空题:13对于椭圆和双曲线有下列命题: 椭圆的焦点恰好是双曲线的顶点; 双曲线的焦点恰好是椭圆的顶点; 双曲线与椭圆共焦点; 椭圆与双曲线有两个顶点相同.其中正确命题的序号是 .14若直线与圆相切,则的值为 15、椭圆的焦点为F1和F2,点P在椭圆上,如果线段PF1中点在y轴上,那么|PF1|是|PF2|的 16若曲线的焦点为定点,则焦点坐标是 .; 三、解答题:17已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线方程.(12分)18P为椭圆上一点,、为左右焦点,若(1)求的面积; (2)求P点的坐标(14分)19、求两条渐近线为且截直线所得弦长为的双曲线方程.(14分)

4、20 在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为 ()写出C的方程;()设直线与C交于A,B两点k为何值时?此时的值是多少?21.A、B是双曲线x21上的两点,点N(1,2)是线段AB的中点(1)求直线AB的方程;(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?22、点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,。(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值。答案DC ADD AC DBA AA一、 填空题:13 14、-

5、1 15. 7倍 16.(0,3)三、解答题:17(12分) 解:由于椭圆焦点为F(0,4),离心率为e=,所以双曲线的焦点为F(0,4),离心率为2,从而c=4,a=2,b=2. 所以求双曲线方程为: 18解析:a5,b3c4 (1)设,则 ,由2得 (2)设P,由得 4,将 代入椭圆方程解得,或或或19、解:设双曲线方程为x2-4y2=.联立方程组得: ,消去y得,3x2-24x+(36+)=0设直线被双曲线截得的弦为AB,且A(),B(),那么: 那么:|AB|=解得: =4,所以,所求双曲线方程是:20解:()设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆它的

6、短半轴,故曲线C的方程为 ()设,其坐标满足消去y并整理得, 故 ,即 而,于是所以时,故 当时,而,所以21A、B是双曲线x21上的两点,点N(1,2)是线段AB的中点(1)求直线AB的方程;(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?19.解:(1)依题意,可设直线方程为yk(x1)2代入x21,整理得 (2k)x22k(2k)x(2k)220 记A(x1,y1),B(x2,y2),则x1、x2是方程的两个不同的实数根,所以2k20,且x1x2由N(1,2)是AB中点得(x1x2)1 k(2k)2k2,解得k1,所易知 AB的方程为yx1

7、.(2)将k1代入方程得x22x30,解出 x11,x23,由yx1得y10,y24即A、B的坐标分别为(1,0)和(3,4)由CD垂直平分AB,得直线CD的方程为y(x1)2,即 y3x ,代入双曲线方程,整理,得 x26x110 记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程的两个的实数根,所以 x3x46, x3x411, 从而 x0(x3x4)3,y03x06 |CD| |MC|MD|CD|2, 又|MA|MB|即A、B、C、D四点到点M的距离相等,所以A、B、C、D四点共圆.22(14分)解:(1)由已知可得点A(6,0),F(0,4) 设点P(,),则=(+6, ),=(4, ),由已知可得 则2+918=0, =或=6. 由于0,只能=,于是=. 点P的坐标是(,) (2) 直线AP的方程是+6=0. 设点M(,0),则M到直线AP的距离是. 于是=,又66,解得=2. 椭圆上的点(,)到点M的距离有 ,由于66, 当=时,d取得最小值说明:在解析几何中求最值:一是建立函数关系,利用代数方法求出相应的最值;再是利用圆锥曲线的几何性质或者曲线的参数方程求最值。第 6 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服