ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.73MB ,
资源ID:2272917      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2272917.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(山东省部分省重点中学2021届高三数学第二次质量监测联考试题.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

山东省部分省重点中学2021届高三数学第二次质量监测联考试题.doc

1、山东省部分省重点中学2021届高三数学第二次质量监测联考试题山东省部分省重点中学2021届高三数学第二次质量监测联考试题年级:姓名:14山东省部分省重点中学2021届高三数学第二次质量监测联考试题考生注意:1本试卷共150分考试时间120分钟2请将各题答案填写在答题卡上3本试卷主要考试内容:集合与常用逻辑用语,函数与导数,三角函数,解三角形,平面向量,复数,数列,不等式,立体几何,解析几何一、选择题:本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的1已知集合,则( )ABCD2已知复数满足,则( )ABCD3已知,都是实数,则“”是“”的( )A充要条件B

2、必要不充分条件C充分不必要条件D既不充分也不必要条件4函数的部分图象大致为( )ABCD5点为抛物线:的准线上一点,直线交抛物线于,两点,若的面积为20,则( )A1BC2D6已知,则( )ABCD7已知点是边长为2的菱形内的一点(包含边界),且,则的取值范围是( )ABCD8已知正方体的棱长为2,以为球心,为半径的球面与平面的交线长为( )ABCD二、选择题:本大题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得3分9已知向量,则( )ABCD10已知实数,满足,则( )A的取值范围为B的取值范围为C的取值范围为D的取值范围

3、为11已知函数的图象经过点,且在上有且仅有4个零点,则下列结论正确的是( )ABC在上单调递增D在上有3个极小值点12经研究发现:任意一个三次多项式函数的图象都只有一个对称中心点,其中是的根,是的导数,是的导数若函数图象的对称点为,且不等式对任意恒成立,则( )ABC的值可能是D的值可能是三、填空题:本大题共4小题,每小题5分,共20分13在等差数列中,则数列的公差为_14将一个斜边长为4的等腰直角三角形以其一直角边所在直线为旋转轴旋转一周,所得几何体的表面积为_15已知双曲线:的左焦点为,点在双曲线的右支上,当的周长最小时,的面积为_16已知函数,若关于的方程恰有两个实数根,则实数的取值范围

4、是_四、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17在中,角,所对的边分别为,已知(1)若,求的值;(2)若的面积为,求周长的最小值18在,且,且,成等差数列这三个条件中任选一个,补充在下面问题中,并作答问题:设数列的前项和为,_若,求数列的前项和注:如果选择多个条件分别解答,按第一个解答计分19如图,在三棱柱中,平面,是的中点,是边长为1的等边三角形(1)证明:(2)若,求二面角的大小20已知函数的部分图象如图所示(1)求的解析式;(2)设若关于的不等式恒成立,求的取值范围21已知,分别是椭圆:的左、右焦点,过点的直线与椭圆交于,两点,点在椭圆上,且当直线垂直于

5、轴时,(1)求椭圆的标准方程;(2)是否存在实数,使得恒成立若存在,求出的值;若不存在,说明理由22已知函数(1)讨论的单调性;(2)当时,若无最小值,求实数的取值范围第二次质量监测联考数学参考答案1A 因为,所以因为,所以2B 因为,所以3C 由,得,则,从而,反之不成立,故“”是“”的充分不必要条件4B 因为,所以是偶函数,所以的图象关于轴对称,排除A,C;因为,排除D5C 由题意不妨设,则的面积为,解得6D 设,则,从而7A 如图,建立平面直角坐标系,则,设,则,故,即的取值范围是8D 由题意知如图,在平面内任取一点,使,则,故以为球心,为半径的球面与平面的交线是以为圆心,以2为半径的圆

6、弧,故该交线长为9AD 由题意可得,因为,所以,则A正确,B错误;对于C,D,因为,所以,则C错误,D正确10ABD 因为,所以因为,所以,则,故A正确;因为,所以因为,所以,所以,所以,故B正确;因为,所以,则,故C错误;因为,所以,则,故D正确11AC 因为点在的图象上,所以,所以因为,所以,则由,得因为在上有且仅有4个零点,所以,所以因为,所以,则,故A正确,B错误令,解得,当时,因为,所以在上单调递增,故C正确由的图象(图略)易知在上有2个极小值点,故D错误12ABC 由题意可得,因为,所以,所以,解得,故因为,所以等价于设,则,从而在上单调递增因为,所以,即,则(当且仅当时,等号成立

7、),从而,故13 设数列的公差为因为,所以,则14 由题意可知所得几何体是圆锥,其底面圆的半径,母线长,则其表面积为1512 如图,设双曲线的右焦点为由题意可得,因为,所以,则的周长为,即当在处时,的周长最小,此时直线的方程为联立整理得,则,故的面积为16由题意可得,显然不是方程的实数根,则故关于的方程恰有两个实数根等价于与的图象恰有两个不同的交点画出的大致图象,如图所示,由图象可得17解:(1)由余弦定理可得,则由正弦定理可得,则(2)因为的面积为,所以,则由余弦定理可得,则(当且仅当时,等号成立),即因为,所以,所以(当且仅当时,等号成立),故,即周长的最小值为1218解:若选,因为,所以

8、,即数列是等差数列因为a,所以解得,故因为,所以,则若选,因为,所以,所以,解得, 则因为满足上式,所以以下步骤同若选,因为,成等差数列,所以,所以,即因为,所以,则数列是首项为1,公差为2的等差数列,故以下步骤同19(1)证明:因为是边长为1的等边三角形,所以,因为是的中点,所以,即是等腰三角形,则,故,即因为平面,所以平面因为平面,所以因为,平面,平面,所以平面因为平面,所以(2)解:连接,则,以为原点,的方向分别为轴,轴,轴的正方向,建立如图所示的空间直角坐标系则,故,设平面的法向量为,则令,得由(1)可得平面的一个法向量为故设二面角为,由图可知为锐角,则,故20解:(1)由图可知,则,

9、从而,故因为的图象过点,所以,所以因为,所以故(2)由(1)可得设,因为,所以因为,即在上恒成立,则,即解得故的取值范围为21解:(1)由题意可得解得, 故椭圆的标准方程为 (2)如图,由(1)可知,当直线的斜率不存在时,则当直线的斜率存在时,设其斜率为,则直线的方程为,联立整理得,则,从而,故由题意可得,则因为,所以综上,存在实数,使得恒成立22解:(1)因为,所以令,得或当0时,由,得;由,得,则在上单调递减,在上单调递增当时,由,得或;由,得,则在上单调递减,在和上单调递增当时,恒成立,则在上单调递增当时,由,得或;由,得,则在上单调递减,在,上单调递增综上,当时,在上单调递减,在上单调递增;当时,在上单调递减,在和上单调递增;当时,在上单调递增;当时,在上单调递减,在,上单调递增(2)当时,由(1)可知在上单调递减,在上单调递增,则有最小值,故不符合题意;当时,由(1)可知在上单调递减,在和上单调递增,因为无最小值,所以,即,解得;当时,由(1)可知在上单调递增,所以无最小值,所以符合题意; 当时,由(1)可知在上单调递减,在,上单调递增因为无最小值,所以,即,即设,则设,则在上恒成立故在上单调递增,即在上单调递增因为,所以存在唯一的,使得故在上单调递减,在上单调递增因为,所以在上恒成立,即在恒成立,即符合题意综上,实数的取值范围为

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服