ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:172.04KB ,
资源ID:2272411      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2272411.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学-第三章-三角恒等变换-3.2-简单的三角恒等变换教学设计-新人教A版必修4.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学-第三章-三角恒等变换-3.2-简单的三角恒等变换教学设计-新人教A版必修4.doc

1、高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换教学设计 新人教A版必修4高中数学 第三章 三角恒等变换 3.2 简单的三角恒等变换教学设计 新人教A版必修4年级:姓名:3.2 简单的三角恒等变换(第1课时)3.2 简单的三角恒等变换(1)一、教学分析本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推

2、理能力.本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点.二、三维目标1知识与技能通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积

3、公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.2过程与方法理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.3情感态度与价值观通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.教学难点:认识三角变换的

4、特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.四、课时安排2课时五、教学设想第1课时(一)导入新课思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我

5、们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.(二)推进新课、新知探究、提出问题与有什么关系?如何建立cos与sin2之间的关系?sin2=,cos2=,tan2=这三个式子有什么共同特点?通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗?证明(1)sincos=sin(+)+sin(-);(2)sin+sin=2sin.并观察这

6、两个式子的左右两边在结构形式上有何不同?活动:教师引导学生联想关于余弦的二倍角公式cos=1-2sin2,将公式中的用代替,解出sin2即可.教师对学生的讨论进行提问,学生可以发现:是的二倍角.在倍角公式cos2=1-2sin2中,以代替2,以代替,即得cos=1-2sin2,所以sin2=. 在倍角公式cos2=2cos2-1中,以代替2,以代替,即得cos=2cos2-1,所以cos2=. 将两个等式的左右两边分别相除,即得tan2=. 教师引导学生观察上面的式,可让学生总结出下列特点:(1)用单角的三角函数表示它们的一半即是半角的三角函数;(2)由左式的“二次式”转化为右式的“一次式”(

7、即用此式可达到“降次”的目的).教师与学生一起总结出这样的特点,并告诉学生这些特点在三角恒等变形中将经常用到.提醒学生在以后的学习中引起注意.同时还要强调,本例的结果还可表示为:sin=,cos=,tan=,并称之为半角公式(不要求记忆),符号由所在象限决定.教师引导学生通过这两种变换共同讨论归纳得出:对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还有所包含的角,以及这些角的三角函数种类方面的差异.因此,三角恒等变换常常先寻找式子所包含的各个角间的联系,并以此为依据,选择可以联系它们的适当公式,这是三角恒等变换的重要特点.代数式变换往往着眼于式子结构形式的变换.对于问题:(

8、1)如果从右边出发,仅利用和(差)的正弦公式作展开合并,就会得出左式.但为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sincos呢?想到sin(+)=sincos+cossin.从方程角度看这个等式,sincos,cossin分别看成两个未知数.二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含sincos的公式,列出sin(-)=sincos-cossin后,解相应的以sincos,cossin为未知数的二元一次方程组,就容易得到所需要的结果.(2)由(1)得到以和的形式表示的积的形式后,解决它的反问题,即用积的

9、形式表示和的形式,在思路和方法上都与(1)没有什么区别.只需做个变换,令+=,-=,则=,=,代入 (1)式即得(2)式.证明:(1)因为sin(+)=sincos+cossin,sin(-)=sincos-cossin,将以上两式的左右两边分别相加,得sin(+)+sin(-)=2sincos,即sincos=sin(+)+sin(-).(2)由(1),可得sin(+)+sin(-)=2sincos.设+=,-=,那么=,=.把,的值代入,即得sin+sin=2sincos.教师给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中用到了换元的思想,如把+看作,-看作,

10、从而把包含,的三角函数式变换成,的三角函数式.另外,把sincos看作x,cossin看作y,把等式看作x,y的方程,通过解方程求得x,这就是方程思想的体现.讨论结果:是的二倍角.sin2=1-cos.略(见活动).(三)应用示例思路1例1 化简:.活动:此题考查公式的应用,利用倍角公式进行化简解题.教师提醒学生注意半角公式和倍角公式的区别,它们的功能各异,本质相同,具有对立统一的关系.解:原式=tan.点评:本题是对基本知识的考查,重在让学生理解倍角公式与半角公式的内在联系.变式训练化简:sin50(1+tan10).解:原式=sin50=2sin50=2cos40=1.例2 已知sinx-

11、cosx=,求sin3x-cos3x的值.活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a-b)3=a3-3a2b+3ab2-b3=a3-b3-3ab(a-b),a3-b3=(a-b)3+3ab(a-b).解完此题后,教师引导学生深挖本例的思想方法,由于sinxcosx与sinxcosx之间的转化.提升学生的运算.化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin3x-cos3x=(sinx-cosx)3+3sinxcosx(sinx-cosx)=.此方法往往适用于sin3xcos3x的化简问题之中.解:由sinx-cosx=,得(sinx-cosx)2=,

12、即1-2sinxcosx=,sinxcosx=.sin3x-cos3x=(sinx-cosx)(sin2x+sinxcosx+cos2x)=(1+)=.点评:本题考查的是公式的变形、化简、求值,注意公式的灵活运用和化简的方法.变式训练 已知sin+cos=,且,则cos2的值是_.答案:例1 已知.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A,B的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A,B角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a2+b2=1的形式,可利用三角代换.证明一:,cos4Asin2B+sin4A

13、cos2B=sin2Bcos+B.cos4A(1-cos2B)+sin4Acos2B=(1-cos2B)cos2B,即cos4A-cos2B(cos4A-sin4A)=cos2B-cos4B.cos4A-2cos2Acos2B+cos4B=0.(cos2A-cos2B)2=0.cos2A=cos2B.sin2A=sin2B.cos2B+sin2B=1.证明二:令=sin,则cos2A=cosBcos,sin2A=sinBsin.两式相加,得1=cosBcos+sinBsin,即cos(B-)=1.B-=2k(kZ),即B=2k+(kZ).cos=cosB,sin=sinB.cos2A=cosB

14、cos=cos2B,sin2A=sinBsin=sin2B.=cos2B+sin2B=1.点评:要善于从不同的角度来观察问题,本例从角与函数的种类两方面观察,利用平方关系进行了合理消元.变式训练在锐角三角形ABC中,ABC是它的三个内角,记S=,求证:S90,90A90-B0.tanAtan(90-B)=cotB0,tanAtanB1.S0.tan(-2)0.又(0,),-20,得0-2.由tan=tan(-2),得=-2,即+2=.例2 求证:活动:证明三角恒等式,一般要遵循“由繁到简”的原则,另外“化弦为切”与“化切为弦”也是在三角式的变换中经常使用的方法.证明:证法一:左边=右边.原式成

15、立.证法二:右边=1-=左边.原式成立.点评:此题进一步训练学生三角恒等式的变形,灵活运用三角函数公式的能力以及逻辑推理能力.变式训练1.求证:.分析:运用比例的基本性质,可以发现原式等价于,此式右边就是tan2.证明:原等式等价于.而上式左边=tan2右边.上式成立,即原等式得证.2.已知sin=msin(2+),求证:tan(+)=tan.分析:仔细观察已知式与所证式中的角,不要盲目展开,要有的放矢,看到已知式中的2+可化为结论式中的+与的和,不妨将+作为一整体来处理.证明:由sin=msin(2+)sin(+)-=msin(+)+sin(+)cos-cos(+)sin=m0sin(+)c

16、os+cos(+)sin(1-m)sin(+)cos=(1+m)cos(+)sintan(+)=tan.(四)知能训练1.若sin=,在第二象限,则tan的值为( )A.5 B.-5 C. D.2.设56,cos=,则sin等于( )A. B. C. D.3.已知sin=,3,则tan_.解答:1.A 2.D 3.-3(五)课堂小结1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2.教师画龙点睛总结:本节学习了公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段.(六)作业

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服