ImageVerifierCode 换一换
格式:DOC , 页数:30 ,大小:1.98MB ,
资源ID:2264792      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2264792.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(极坐标与参数方程含答案(经典39题).doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

极坐标与参数方程含答案(经典39题).doc

1、高考极坐标参数方程(经典39题)1 在极坐标系中,以点为圆心,半径为3的圆与直线交于两点.(1) 求圆及直线的普通方程.(2)求弦长.2在极坐标系中,曲线,过点A(5,)(为锐角且)作平行于的直线,且与曲线L分别交于B,C两点.()以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;()求|BC|的长.3在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点(1)写出直线的参数方程和曲线的直角坐标方程;(2)求证直线和曲线相交于两点、,并求的值4已知直线的参数方程是,圆C的极坐标方程为

2、(1)求圆心C的直角坐标;(2)由直线上的点向圆C引切线,求切线长的最小值5在直角坐标系中,直线的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为.()求圆C在直角坐标系中的方程;()若圆C与直线相切,求实数的值.6在极坐标系中,O为极点,已知圆C的圆心为,半径r=1,P在圆C上运动。 (I)求圆C的极坐标方程;(II)在直角坐标系(与极坐标系取相同的长度单位,且以极点O为原点,以极轴为x轴正半轴)中,若Q为线段OP的中点,求点Q轨迹的直角坐标方程。7 在极坐标系中,极点为坐标原点O,已知圆C的圆心坐标为,半径为,直线的极坐标方程为.(

3、1) 求圆C的极坐标方程;(2)若圆C和直线相交于A,B两点,求线段AB的长.8平面直角坐标系中,将曲线(为参数)上的每一点纵坐标不变,横坐标变为原来的一半,然后整个图象向右平移个单位,最后横坐标不变,纵坐标变为原来的2倍得到曲线 以坐标原点为极点,的非负半轴为极轴,建立的极坐标中的曲线的方程为,求和公共弦的长度9在直角坐标平面内,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数)求极点在直线上的射影点的极坐标;若、分别为曲线、直线上的动点,求的最小值。10已知极坐标系下曲线的方程为,直线经过点,倾斜角.()求直线在相应直角坐标系下的参数方程; ()

4、设与曲线相交于两点,求点到两点的距离之积. 11在直角坐标系中,曲线的参数方程为以坐标原点为极点,轴的正半轴为极轴的极坐标系中曲线的极坐标方程为()分别把曲线化成普通方程和直角坐标方程;并说明它们分别表示什么曲线()在曲线上求一点,使点到曲线的距离最小,并求出最小距离12设点分别是曲线和上的动点,求动点间的最小距离.13已知是曲线上任意一点,求点到直线距离的最大值和最小值.14 已知椭圆的极坐标方程为,点、为其左,右焦点,直线的参数方程为(1)求直线和曲线的普通方程; (2)求点、到直线的距离之和.15已知曲线,直线(1)将直线的极坐标方程化为直角坐标方程;(2)设点在曲线上,求点到直线距离的

5、最小值16已知的极坐标方程为点的极坐标是.()把的极坐标方程化为直角坐标参数方程,把点的极坐标化为直角坐标;()点()在上运动,点是线段的中点,求点运动轨迹的直角坐标方程17在直角坐标系中,直线的参数方程为:(为参数),若以O为极点,轴正半轴为极轴建立极坐标系,则曲线C的极坐标方程为r=cos(+),求直线l被曲线C所截的弦长18 已知曲线的极坐标方程为,曲线的方程是, 直线的参数方程是: .(1) 求曲线的直角坐标方程,直线的普通方程;(2)求曲线上的点到直线距离的最小值. 19在直接坐标系中,直线的方程为,曲线的参数方程为(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,

6、以轴正半轴为极轴)中,点的极坐标为,判断点与直线的位置关系;(2)设点是曲线上的一个动点,求它到直线的距离的最小值20经过(,)作直线交曲线:(为参数)于、两点,若,成等比数列,求直线的方程.21 已知曲线的极坐标方程是,曲线的参数方程是是参数)(1) 写出曲线的直角坐标方程和曲线的普通方程;(2)求的取值范围,使得,没有公共点22设椭圆的普通方程为(1)设为参数,求椭圆的参数方程;(2)点是椭圆上的动点,求的取值范围. 23在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为:直线与曲线分别交于(1)写出曲线和直线的普通方程;(2)若,成等比数列,求的

7、值. 24已知直线的参数方程是,圆C的极坐标方程为(I)求圆心C的直角坐标;()由直线上的点向圆C引切线,求切线长的最小值25在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程为(为对数),求曲线截直线所得的弦长.26已知曲线C1:(为参数),曲线C2:(t为参数)(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(2)若把C1,C2上各点的纵坐标都拉伸为原来的两倍,分别得到曲线写出的参数方程与公共点的个数和C公共点的个数是否相同?说明你的理由27求直线被曲线所截的弦长.28已知圆的方程为求圆心轨迹C的参数方程;点是(1)中曲线

8、C上的动点,求的取值范围.29 在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角.(I)写出圆的标准方程和直线的参数方程;()设直线与圆相交于两点,求的值.30 已知为半圆:(为参数,)上的点,点的坐标为(1,0),为坐标原点,点在射线上,线段与C的弧的长度均为。(I)以为极点,轴的正半轴为极轴建立极坐标系,求点的极坐标;(II)求直线的参数方程。31在直角坐标系中,直线的参数方程为(为参数)在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为()求圆的直角坐标方程;()设圆与直线交于点,若点的坐标为(3,),求与32已知A,B两点是椭圆

9、与坐标轴正半轴的两个交点.(1)设为参数,求椭圆的参数方程;(2)在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大,并求此最大值.33已知曲线C: (t为参数), C:(为参数)。()化C,C的方程为普通方程,并说明它们分别表示什么曲线;(II)若C上的点P对应的参数为,Q为C上的动点,求中点到直线(t为参数)距离的最大值。34在直角坐标系中,曲线C1的参数方程为,M是曲线C1上的动点,点P满足(1) 求点P的轨迹方程C2;(2)以O为极点,轴正半轴为极轴的极坐标系中,射线与曲线C1、C2交于不同于极点的A、B两点,求|AB|.35设直线经过点,倾斜角,()写出直线的参数方程;()设直

10、线与圆相交与两点A,B.求点P到A、B两点的距离的和与积.36在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系. 已知点的极坐标为,曲线的参数方程为()求直线的直角坐标方程;()求点到曲线上的点的距离的最小值37在直角坐标系中, 过点作倾斜角为的直线与曲线相交于不同的两点.() 写出直线的参数方程; () 求 的取值范围.38在直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为。(1)求圆的直角坐标方程;(2)设圆与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。39在平面直角坐标系中,

11、曲线的参数方程为(,为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆已知曲线上的点对应的参数,射线与曲线交于点(I)求曲线,的方程;(II)若点,在曲线上,求的值参考答案1(1) 直线 (2) 【解析】(1)圆C在直角坐标系中的圆心坐标为(0,2),半径为3,所以其普通方程为.直线l由于过原点,并且倾斜角为,所以其方程为.(2)因为圆心C到直线的距离为1,然后利用弦长公式可求出|AB|的值(1) .4分直线 .8分(2) 因为 所以2() () 【解析】(I)先把曲线方程化成普通方程,转化公式为.(II)直线方程与抛物线方程联立消y之后,借助韦达定理和弦定

12、公式求出弦长即可()由题意得,点的直角坐标为 (1分) 曲线L的普通方程为: (3分)直线l的普通方程为: (5分)()设B()C() 联立得 由韦达定理得, (7分) 由弦长公式得3解:(1)点的直角坐标是,直线倾斜角是, (1分)直线参数方程是,即, (3分)即,两边同乘以得,曲线的直角坐标方程曲线的直角坐标方程为;(5分)(2)代入,得,直线的和曲线相交于两点、,(7分)设的两个根是, (10分)【解析】略4(I), (2分), (3分)即,(5分)(II)方法1:直线上的点向圆C 引切线长是, (8分)直线上的点向圆C引的切线长的最小值是 (10分)方法2:, (8分)圆心C到距离是,

13、直线上的点向圆C引的切线长的最小值是【解析】略5()由得,分结合极坐标与直角坐标的互化公式得,即 分()由直线的参数方程化为普通方程,得,. 分结合圆C与直线相切,得,解得.【解析】略6解:()设圆上任一点坐标为,由余弦定理得所以圆的极坐标方程为 (5分) ()设则,在圆上,则的直角坐标方程为 (10分)【解析】略7【解析】略8解:曲线(为参数)上的每一点纵坐标不变,横坐标变为原来的一半得到, 然后整个图象向右平移个单位得到, 最后横坐标不变,纵坐标变为原来的2倍得到, 所以为, 又为,即, 所以和公共弦所在直线为, 所以到距离为, 所以公共弦长为 【解析】略9(1)极坐标为(2)【解析】解:

14、(1)由直线的参数方程消去参数得:,则的一个方向向量为,设,则,又,则,得:,将代入直线的参数方程得,化为极坐标为。(2),由及得,设,则到直线的距离,则。10() (), , 【解析】11,【解析】12 【解析】略13最大值为2,最小值为0【解析】将极坐标方程转化成直角坐标方程:=3cos即:x2y2=3x,(x)2y2= 3cos=1即x=1 6直线与圆相交。所求最大值为2, 8最小值为0。 1014(1)(2)【解析】() 直线普通方程为; 3分曲线的普通方程为 6分() ,, 7分点到直线的距离 8分点到直线的距离 9分 10分15(2)【解析】: 设, (其中, 当时, 点到直线的距

15、离的最小值为。16()的直角坐标方程是,的直角坐标为(2,0)()运动轨迹的直角坐标方程是.【解析】以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位()由得,将,代入可得的直角坐标方程是,的直角坐标参数方程可写为点的极坐标是,由,知点的直角坐标为(2,0). ()点M()在上运动,所点是线段的中点,所以,所以,点运动轨迹的直角坐标参数方程是即点运动轨迹的直角坐标方程是.17【解析】试题分析:将方程(t为参数)化为普通方程得,3x+4y+1=0,3分将方程r=cos(+)化为普通方程得,x2+y2-x+y=0, 6分它表示圆心为(,-),半径为的圆, 9分则圆心到直线

16、的距离d=, 10分弦长为2 12分考点:直线参数方程,圆的极坐标方程及直线与圆的位置关系点评:先将参数方程极坐标方程转化为普通方程18解: (1) ;(2)到直线距离的最小值为。 【解析】试题分析:()利用直角坐标与极坐标间的关系:cos=x,sin=y,2=x2+y2,进行代换即得C的直角坐标方程,将直线l的参数消去得出直线l的普通方程()曲线C1的方程为4x2+y2=4,设曲线C1上的任意点(cos,2sin),利用点到直线距离公式,建立关于的三角函数式求解解: (1) 曲线的方程为,直线的方程是: (2)设曲线上的任意点, 该点到直线距离. 到直线距离的最小值为。 考点:本题主要考查了

17、曲线参数方程求解、应用考查函数思想,三角函数的性质属于中档题点评:解决该试题的关键是对于椭圆上点到直线距离的最值问题,一般用参数方程来求解得到。19(1)点P在直线上;(2)当时,d取得最小值,且最小值为。【解析】试题分析:(1)由曲线C的参数方程为 ,知曲线C的普通方程,再由点P的极坐标为(4, ),知点P的普通坐标为(4cos ,4sin ),即(0,4),由此能判断点P与直线l的位置关系(2)由Q在曲线C: 上,(0360),知Q( cos,sin)到直线l:x-y+4=0的距离d= |2sin(+)+4|,(0360),由此能求出Q到直线l的距离的最小值解:(1)把极坐标系下的点化为直

18、角坐标,得P(0,4)。因为点P的直角坐标(0,4)满足直线的方程,所以点P在直线上,(2)因为点Q在曲线C上,故可设点Q的坐标为,从而点Q到直线的距离为由此得,当时,d取得最小值,且最小值为考点:本试题主要考查了椭圆的参数方程和点到直线距离公式的应用,解题时要认真审题,注意参数方程与普通方程的互化,注意三角函数的合理运用点评:解决该试题的关键是参数方程与普通方程的互化以及对于点到直线距离公式的灵活运用求解最值。20【解析】试题分析:把曲线的参数方程化为普通方程,由|AB|2=|MA|MB|,可得|AB|等于圆的切线长,设出直线l的方程,求出弦心距d,再利用弦长公式求得|AB|,由此求得直线的

19、斜率k的值,即可求得直线l的方程解:直线的参数方程:(为参数),曲线:化为普通方程为,将代入整理得:,设、对应的参数分别为,由成等比数列得:,直线的方程为:考点:本题主要考查把参数方程化为普通方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于基础题点评:解决该试题的关键是把曲线的参数方程化为普通方程,由|AB|2=|MA|MB|,可得|AB|等于圆的切线长,利用切割线定理得到,并结合勾股定理得到结论。 21(1)曲线的直角坐标方程是,曲线的普通方程是;(2)。【解析】本试题主要是考查了极坐标方程和曲线普通方程的互化,以及曲线的交点的求解的综合运用。因为根据极坐标方程与直角坐标方程的

20、互化得到普通方程,然后,联立方程组可知满足没有公共点时的t的范围。解:(1)曲线的直角坐标方程是,曲线的普通方程是5分(2)当且仅当时,没有公共点,解得10分22(1)(为参数)(2)【解析】(1)由,令可求出椭圆E的参数方程。(2)根据椭圆的参数方程可得,然后易得.解:(1)(为参数)(2)23(1)(2)【解析】(1)对于直线l两式相减,直接可消去参数t得到其普通方程,对于曲线C,两边同乘以,再利用可求得其普通方程.(2)将直线l的参数方程代入曲线C的普通方程可知,,借助韦达定理可建立关于a的方程,求出a的值.24(I);()【解析】(I)把圆C的极坐标方程利用化成普通方程,再求其圆心坐标

21、.(II)设直线上的点的坐标为,然后根据切线长公式转化为关于t的函数来研究其最值即可.解:(I), (2分), (3分)即,(5分)(II):直线上的点向圆C 引切线长是, (8分)直线上的点向圆C引的切线长的最小值是 (10分)直线上的点向圆C引的切线长的最小值是 (10分)25【解析】(1)先把直线l和曲线C的方程化成普通方程可得和,然后联立解方程组借助韦达定理和弦长公式可求出弦长.解:由可化为直角坐标方程参数方程为(为对数)可化为直角坐标方程联立(1)(2)得两曲线的交点为所求的弦长 13分26(1)C1是圆,C2是直线。C2与C1有两个公共点(2)C1:,C2:。有两个公共点,C1与C

22、2公共点个数相同【解析】本试题主要是考查了参数方程与极坐标方程与普通方程的转化,以及直线与椭圆的 位置关系的运用。(1)结合已知的极坐标方程和参数方程,消去参数后得到普通方程,然后利用直线与圆的位置关系判定。(2)拉伸后的参数方程分别为C1:为参数);C2:(t为参数)联立消元得其判别式,可知有公共点。解:(1)C1是圆,C2是直线C1的普通方程为,圆心C1(0,0),半径r=2C2的普通方程为x-y-1=0因为圆心C1到直线x-y+ 1=0的距离为,所以C2与C1有两个公共点(2)拉伸后的参数方程分别为C1:为参数);C2:(t为参数)化为普通方程为:C1:,C2:联立消元得其判别式,所以压

23、缩后的直线C2与椭圆C1仍然有两个公共点,和C1与C2公共点个数相同27弦长为。【解析】本试题主要是考查了直线与圆的 相交弦的长度问题的运用。将参数方程化为普通方程,然后利用圆心到直线的距离公式和圆的半径,结合勾股定理得到结论28(1)圆心轨迹的参数方程为(2)【解析】本试题主要是考查了圆的参数方程与一般式方程的互换,以及运用参数方程求解最值的问题。(1)因为圆的方程整理得,设圆心坐标为,则可得圆心轨迹的参数方程为(2)因为点P是曲线C上的动点,因此设点,那么,结合三角函数的性质得到最值。29()(为参数);() 。【解析】(1)方程消去参数得圆的标准方程为,由直线方程的意义可直接写出直线的参

24、数;(2)把直线的参数方程代入,由直线的参数方程中的几何意义得的值.解:()圆的标准方程为 2分 直线的参数方程为,即(为参数) 5分()把直线的方程代入, 得, 8分所以,即 10分30()(,). ()(t为参数) 【解析】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化(1)利用直角坐标与极坐标间的关系,即利用cos=x,sin=y,2=x2+y2,进行代换即得(2)先在直角坐标系中算出点M、A的坐标,再利用直角坐标的直线AM的参数方程求得参数方程即可解:()由已知,M点的极角为,且M

25、点的极径等于,故点M的极坐标为(,). ()M点的直角坐标为(),A(0,1),故直线AM的参数方程为(t为参数) 31 () () |PA|+|PB|=|AB|+2|PA|=. 【解析】此题考查学生会将极坐标方程和参数方程分别化为直角坐标方程和普通方程,掌握直线参数方程中参数的几何意义,是一道中档题(I)圆C的极坐标方程两边同乘,根据极坐标公式进行化简就可求出直角坐标方程,最后再利用三角函数公式化成参数方程;()将直线l的参数方程代入圆C的直角坐标方程,得A,B坐标,进而得到结论。解:()由=2sin,得2=2sin,x2+y2=2y,所以()直线的一般方程为,容易知道P在直线上,又,所以P

26、在圆外,联立圆与直线方程可以得到:,所以|PA|+|PB|=|AB|+2|PA|=.同理,可得32(1) (为参数);(2)当 ,即 时, 。 【解析】本试题主要是考查了运用参数方程来求解最值的数学思想的运用。(1)把代入椭圆方程,得, 于是 , 即 ,那么可知参数方程的表示。(2)由椭圆的参数方程,设易知 A(3,0),B(0,2),连接OP,结合三角函数的值域求解最值。解:(1)把代入椭圆方程,得, 于是 , 即 (3分)由参数的任意性,可取 ,因此,椭圆 的参数方程是 (为参数)(5分)(2)由椭圆的参数方程,设易知 A(3,0),B(0,2),连接OP,(9分)当 ,即 时,(11分)

27、 (12分)33(I),为圆心是,半径是1的圆。为中心是坐标原点,焦点在轴上,长半轴长是2,短半轴长是4的椭圆。()。【解析】本试题主要是考查了参数方程与普通方程的转化以及点到直线的距离公式的求解的综合运用。(1)消去参数得到普通方程。(2)因为当时,故为直线,那么利用点到直线的距离公式得到。解:(I)4分为圆心是,半径是1的圆。为中心是坐标原点,焦点在轴上,长半轴长是2,短半轴长是4的椭圆。6分()当时,故8分为直线,到的距离10分从而当时,取得最大值12分34(1) (2)【解析】(1)先求出曲线C1的普通方程为,再根据,结合代点法可求出点P的轨迹方程.(2)因为两圆内切,切点为极点,然后

28、再根据圆心到射线的距离,求出弦长,两个圆的弦长相减可得|AB|的值.35();();【解析】(I)引进参数t,可以直接写出其参数方程为.(II)将直线的参数方程代入圆的方程,可得到关于t的一元二次方程,根据(I)中方程参数的几何意义可知,|PA|+|PB|,|PA|PB|=.然后借助韦达定理解决即可.解:()依题意得,直线的参数方程为4分()由代入圆的方程得.6分由的几何意义,因为点P在圆内,这个方程必有两个实根,所以8分10分12分36();()【解析】(I)由极坐标根据公式,可得M的直角坐标为(4,4).(II)由于M在圆C外,所以最小距离应等于|MC|-r.解:()由点的极坐标为得点的直

29、角坐标为,2分所以直线的直角坐标方程为5分()由曲线的参数方程化为普通方程为,8分圆心为,半径为10分由于点M在曲线C外,故点到曲线上的点的距离最小值为12分37() 为参数)() 【解析】本试题主要考查了直线的参数方程与直线与圆的位置关系的综合运用。(1)利用直线过点和直线的斜率得到参数方程。(2)直线与圆连理方程组,得到,结合判别式得到结论。解:() 为参数) 4分() 为参数)代入,得 ,10分38;(2)【解析】本试题主要是考查了极坐标系和直角坐标系,以及直线与圆的位置关系和不等式的综合运用。先利用极坐标系与直角坐标系 互化得到普通方程,让直线与圆联立方程组得到相交弦的长度。解:(1)

30、由得即-3分(2)将的参数方程代入圆C的直角坐标方程,得即由于,设是上述方程的两实根,所以故由上式及t的几何意义得:|PA|+|PB|=-7分39(I)的方程为(为参数),或,的方程为,或;(II)【解析】(I)由于曲线C1过点M,及对应参数,代入,可求出a,b.的值.设圆C2的极坐标方程为,根据过点,代入,可求出R,所以其极坐标方程.(II) 因为点, 在在曲线上, 代入曲线C1的方程,直接求即可.(I)将及对应的参数,代入,得,即,所以曲线的方程为(为参数),或.设圆的半径为,由题意,圆的方程为,(或).将点代入,得,即.(或由,得,代入,得),所以曲线的方程为,或.(II)因为点, 在在曲线上,所以,所以.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服