ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:2.01MB ,
资源ID:2261616      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2261616.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于光栅干涉仪的暗场成像的Cramér-Rao下界.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于光栅干涉仪的暗场成像的Cramér-Rao下界.pdf

1、IntroductionOver the past decades,dark-field imaging using agrating interferometer has showed great promise indiverse fields1,as it is compatible with conventionalsources,including X-ray tube sources2and neutrons3,anddoesnot requirehightemporal coherence4.Especially,dark-field imaging can provide in

2、formationabout the objects microstructures on a scale below thespatial resolution of the grating interferometer,and alsoenables visualization of spatially-resolved small-anglescattering properties5-6.In recent years,X-ray dark-fieldimaging with a grating interferometer has shown toprovide significan

3、t benefits for several applications,including but not limited to:mammography7,pulmonaryimaging8,materials analysis9,security screening10andfood sciences11.Meanwhile,neutron dark-field imagingusing a Talbot-Lau interferometer also has shown greatpotentialinnon-destructivetestingofmetallicmaterials12,

4、research on magnetic materials13-14,and soon,owing to the unique neutron features of highpenetration and magnetic moment.In grating interferometry,several methods have beendeveloped for quantitative signal retrieval from measuredintensities15-20.Among them,the phase stepping(PS)technique is routinel

5、y used as the standard approach19,21.The noise performance of the 3 signals retrieved with PStechniquehavebeentheoreticallyanalyzedandexperimentally validated22-25.However,previous studiesdemonstrated that the noise variances of amplitude andphase signals obtained with a grating interferometer werea

6、lways higher than Cramr-Rao lower bound(CRLB)26.Numerical results implied a sub-optimality of PStechnique for refraction and dark-field imaging in termsof noise variance27.Their results also suggested thenecessity of developing advanced retrieval algorithms tofurther reduce the noise variance and im

7、prove doseefficiency.Recently,reference28discussed the noisestandard deviation and algorithm efficiency of phaseshifting interferometry theoretically and numerically usingCRLB.Although their studies were presented in terms ofthe optical pathlength,the obtained results were alsoapplicable to grating-

8、based refraction imaging,with somemathematical transforms.However,there still lacks of acomprehensive evaluation on the algorithm performancewith respect to dark-field imaging using a gratinginterferometer.Herein the performance of the PS technique for dark-field retrieval using CRLB is evaluated.An

9、alyticalCramr-Rao lower bound of dark-field imaging using a grating interferometerLIU Bo,CHEN Zihan,GU Yao,CHEN Heng,WANG ZhiliDepartment of Optical Engineering,School of Physics,Hefei University of Technology,Hefei 230009,ChinaAbstract:In grating-based phase contrast imaging,the phase stepping tech

10、nique is commonly utilized for data acquisition andsignal retrieval from acquired intensity data.However,the algorithm efficiency with respect to the dark-field retrieval has yet tobe sufficiently evaluated.Herein the algorithm efficiency of dark-field retrieval based on Cramr-Rao lower bound is eva

11、luated.The theoretical analysis and numerical results demonstrates that fully efficient algorithm is currently available only for 3-step phasestepping technique,and other techniques with more phase steps are all sub-optimal.Quantitatively,the dependence of the algorithmefficiency on the phase step n

12、umber and the visibility is investigated.It is shown that the phase stepping technique can nearlyapproach its theoretical optimal efficiency in the case of a low visibility.With a phase step greater than 5,the algorithm efficiencyis only 77.4%in the case of a high visibility.The study can provide so

13、me reference for signal-to-noise ratio improvement andpotential dose optimization in X-ray and neutron grating-based dark-field imaging.Keywords:dark-field imaging;grating interferometer;Cramr-Rao lower bound;visibilityReceived:2023-03-24Supported by the National Natural Science Foundation of China(

14、U1532113,11475170,11905041),and the Fundamental Research Funds for the CentralUniversities(PA2020GDKC0024,JZ2022HGTB0244)Leading author:LIU Bo,Master,Research Direction:X-ray phasecontrast imaging,E-mail:Corresponding author:WANG Zhili,Doctor,Professor,ResearchDirection:X-ray phase contrast imaging,

15、E-mail:DOI:10.3969/j.issn.1005-202X.2023.09.008第40卷第9期2023年 9月中国医学物理学杂志Chinese Journal of Medical PhysicsVol.40 No.9September 2023Medical imaging physics-1105expressions of CRLB were derived for 3-step and 4-stepPStechniques,respectively.Throughnumericalsimulations,we discussed the dependence of the

16、 CRLBandalgorithmefficiencyonvariousexperimentalparameters,including the mean intensity,the phase stepnumber and the visibility.The presented results can beuseful for advanced algorithm development and furthernoise reduction in grating-based dark-field imaging.1 Theory and methods1.1 Signal retrieva

17、l by PS techniqueIn grating interferometer,the PS technique iscommonly used as the standard approach for dataacquisition and retrieval of multi-contrast signals.In dataacquisition,one of the gratings is translated laterally overits period with a total ofNphase step,while intensitymeasurements are pe

18、rformed at each phase step.For eachdetector pixel,the measured intensity oscillationIkfor aphase stepkcan be expressed as2:Ik=I01+Vcos()+2kN()1 k N(1)whereI0,V,anddenote the mean intensity,the visibility,and the phase of the intensity oscillation,respectively,andNis the total number of phase step.Fo

19、r notation brevity,the spatial dependence of all terms has been omitted in Eq.(1).Subsequently,we can readily retrieve the meanintensityI0,the phaseand the visibilityVbyI0=1Nk=1NIk(2)=-tan-1k=1NIksin()2kNk=1NIkcos()2kN(3)V=2k=1NIksin()2kN2+k=1NIkcos()2kN2k=1NIk(4)In order to quantitatively retrieve

20、the transmission,refraction,and dark-field signals,one needs to comparemeasurements with a sample in the beam,to referencemeasurements without sample,and thereby deduce thelocal changes of the intensity oscillation induced by thesample.In the following,the superscriptssandrwillconsistently denote th

21、e values measured with the samplein place and as a reference without.The transmissionsignalTis calculated by the negative logarithm of theratio of the mean intensity with sampleIs0and withoutIr0:T=-ln()Is0Ir0=()x,y,z dz(5)Where()x,y,zdenotes the samples linear attenuationcoefficient.The refraction s

22、ignalRcan be obtained by thedifference of the sample phasesand the reference phaser:R=s-r(6)The dark-field signalDis given by the localreduction of the visibility of the intensity oscillation:D=VsVr(7)Where theVsdenotes the samples visibility and theVrdenotes the references visibility.These 3 signal

23、s arecalculated on a pixel-by-pixel basis,and normallydisplayed in the form of images.1.2 CRLB of dark-field signalThe CRLB gives the lowest possible noise varianceof the estimated parameters from a set of noisymeasurements.In the following,we will use CRLB as ametric to evaluate the noise variance

24、of the dark-fieldsignal retrieved by the PS technique.The study alsoconsiders the Poisson distributed photon-counting noise,the most dominant noise source in real experiments,which has been validated for both X-ray and neutronimaging previously18,22,29-30.For photon-counting detectors,the measured d

25、atafollows the Poisson distribution.Under this noise model,the joint probabilityPof acquired intensities at all phasesteps is given byP()I0,V,=k=1N()IkIkIk!exp()-Ik(8)whereIkdenotes the measured intensity for a phase stepk,andIkdenotes the corresponding mean value.Secondly,the log-likelihood functio

26、nLshould bederived.In our case,it isL()I0,V,=lnP()I0,V,=k=1NIklnIk-Ik-lnIk!(9)Then taking the first partial derivatives of the log-likelihood functionLwith respect toI0,Vand:LI0=k=1NIk-IkIk1+Vcos()+2kN(10)LV=k=1NIk-IkIkI0cos()+2kN(11)L=k=1NIk-IkIkI0Vsin()+2kN(12)Thirdly,the Fisher information matrix

27、Jwith respecttoI0,Vandis calculated with Eq.(13).中国医学物理学杂志第40卷-1106J=-E 2LI20E2LI0VE2LI0E2LVI0E2LV2E2LVE2LI0E2LVE2L2(13)whereE denotes the expectation value with respect tothe given statistical model.For our Poisson distributioncase,by use of Eqs.(10)-(13),we can obtain the resultingFisher informati

28、on matrix:J=k=1N1-Ik 2IkI202IkI0V2IkI02IkI0V2IkV22IkV2IkI02IkV2Ik2(14)where2IkI20=1+Vcos()+2kN2(15)2IkV2=I20cos2()+2kN(16)2Ik2=-I20V2sin()+2kN(17)2IkI0V=I01+Vcos()+2kNcos()+2kN(18)2IkI0=-I0V1+Vcos()+2kNsin()+2kN(19)2IkV=-I20Vcos()+2kNsin()+2kN(20)And then,by inverting the Fisher information matrix,t

29、he CRLB ofI0,V,can be obtained from the diagonalelement.For the visibility signalV,its CRLB is given bythe second diagonal element in the inverse of Fisherinformation matrix.Therefore,one yields the CRLB of thevisibility signal:CRLBV=J-122(21)Finally,by use of Eqs.(7)and(21),and errorpropagation for

30、mula29,we can obtain CRLB of theretrieved dark-field signal:CRLBD=()DVr2CRLBVr+()1Vr2CRLBVs(22)1.3 Algorithm efficiencyFor PS technique,the noise variance of the retrievedvisibility and dark-field signals have been calculatedthrough error propagation formula in previous studies22-23.A direct compari

31、son between CRLB and the calculatednoise variance can reveal the efficiency of PS technique.The algorithm efficiency is defined as the ratio of CRLBto the calculated noise variance of dark-field signal:=()CRLBD2D 100%(23)where the noise variance2Dcan be found in reference23.The algorithm efficiency

32、also indicates whether thereexists any potential for algorithm improvement.In thefollowing,the algorithm performance of several commonPS techniques in the dark-field retrieval will be evaluated.On the basis of general expressions derived above,thetheoretical formulaeof CRLBandthealgorithmefficiency

33、of common PS techniques are presented anddiscussed.1.3.1 3-step PS technique The 3-step PS technique usethe least number of intensity measurements to retrieve thetransmission,refraction and dark-field signals quantitatively18-19.Computing the Fisher information matrix andfinding the inverse matrix w

34、ill lead to CRLB.With trivialmathematical computations,we can obtain CRLB of theretrieved visibility by 3-step PS technique:CRLB3V=2-V2+Vcos()33I0(24)By use of Eqs.(22)and(24),we can yield thecorresponding CRLB of the retrieved dark-field signalusing 3-step PS technique:CRLB3D=D231Ir02()Vr2-1+cos()3

35、rVr+1Is02()Vs2-1+cos()3sVs(25)Previous studies has reported the noise variance of3-step PS technique for retrieved dark-field signals23,andthe expression is actually identical to Eq.(25),whichmeans that if extrinsic noise can be eliminated,the 3-stepPS technique can reach the theoretically optimal n

36、oiseefficiency.In other words,this algorithm is fully efficient(i.e.,=100%)according to Eq.(23).A similar result hasbeen observed for CRLB of the retrieved refractionsignal28,31.It is worth noting that fully efficient第9期刘波,等.基于光栅干涉仪的暗场成像的Cramr-Rao下界-1107algorithms are currently available only for 3-

37、step PStechnique,and other PS techniques with more phase stepsare all sub-optimal,as discussed in the following.1.3.2 4-step PS technique Similar to the case of 3-stepPS technique,by calculating the diagonal elements of theinverse of the Fisher information matrix,we can obtainCRLB of the retrieved v

38、isibility by 4-step PS technique:CRLB4V=4-3V2-V2cos48I0(26)By use of Eqs.(22)and(26),we can yield the CRLBof the retrieved dark-field signal:CRLB4V=D241Ir02()Vr2-1-1+cos()4r2+1Is02()Vs2-1-1+cos()4s2(27)Previous studies reported the noise variance of theretrieved dark-field signal by 4-step PS techni

39、que as23:2D=D241Ir02()Vr2-1+1Is02()Vs2-1(28)Different from the CRLB in Eq.(27),the noisevariance is independent of the phasessandr.By use ofEqs.(27)and(28),we can calculate the algorithmefficiency of 4-step PS technique as:4=2()Vr2-1-1+cos()4r2+Ir0Is02()Vs2-1-1+cos()4s22()Vr2-1+Ir0Is02()Vs2-1100%(29

40、)As revealed by Eq.(29),the algorithm efficiency4is generally lower than 100%,which indicates that 4-stepPS technique is sub-optimal in terms of the noise of theretrieved dark-field signal.Only at specific isolatedlocations determined byr=()2m+1 4ands=()2n+1 4,withm,nboth being integers,thealgorithm

41、 efficiency reaches 100%,meaning that the noisevariance is equal to the CRLB at these locations.1.3.3 N-step PS technique()N 5In order to effectivelyremove the effect of higher orders in obtaining Eq.(1),alarger integer is selected forN21.Since analyticalexpression of CRLB of the dark-field signal r

42、etrieved byN-step PS technique is difficult to be simplified,we willcompute these bounds numerically in the following.The noise variance of the dark-field signal retrievedby N-step PS technique was23:2D=D2N1Ir02()Vr2-1+1Is02()Vs2-1(30)For further analysis,the algorithm performance ofN-step PS techni

43、que will evaluated by calculating theCRLBnumericallyandcomparingitwiththecorresponding noise variance in Eq.(30).Especially,thedependences of the algorithm efficiency on the meanintensity,the phase step number and the visibility areinvestigated systematically.2 Results and discussionsThe developed m

44、odels of CRLB are validated bynumerical calculations,and some quantitative insights intothe algorithm efficiency is further provided.In order toobtain results independent of the sample,we furtherrestricted the analysis to a sample-free region within theretrieved dark-field image32.Note that this cho

45、ice iscommonly made in experimental measurements18,23.Therefore,the mean intensity,the visibility,and the phaseare equal for the reference and sample measurements,andthe noise is determined by calculating the variance overa background region of80 80pixels.As revealed by Eqs.(24)and(27),the CRLB ofre

46、trieved dark-field signals exhibits a periodic oscillationas a function of the phasessandr.Similar results wereobtained for CRLB of refraction signals28.By contrast,the calculated noise variance is independent of the phasedistribution,with a phase step number greater than 3.Therefore,we investigated

47、 the dependence of CRLB ofdark-field signals on the phase distribution.For thispurpose,we calculated the ratio of the oscillationamplitude to the corresponding average as a function ofthe phase step number for different representativevisibilities(Figure 1).As expected,the ratio decreasesmonotonicall

48、y when the phase step number increases,indicating a larger phase step number is effective toremove the effect of phase distribution.With a highvisibility of 0.74,the ratios are 23%and 10%for 4-stepand 5-step PS techniques,respectively,which means thatthe substantial effect of the phase distribution

49、on CRLBcan not be neglected.With a phase step number greaterthan 5,the ratio decreases to less than 5%.The phasedistribution is considered to have a negligible contribution中国医学物理学杂志第40卷-1108to CRLB.Then we can reasonably take the average valueof CRLB to evaluate the algorithm efficiency.With alower

50、visibility(0.30 and 0.50),the ratio is always below10%,meaning that the phase distribution has aninsignificant effect on CRLB.Based on results shown inFigure 1,for an impartial and convenient comparison,theaverage value of CRLB will be used for algorithmefficiency evaluations in the following.The de

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服