ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:2.03MB ,
资源ID:2261522      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2261522.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(基于多普勒域补偿的车载雷达距离角度联合成像算法.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

基于多普勒域补偿的车载雷达距离角度联合成像算法.pdf

1、基于多普勒域补偿的车载雷达距离角度联合成像算法李毅夏伟杰*周建江楚咏焱(南京航空航天大学电子信息工程学院南京211100)(南京楚航科技有限公司南京211100)摘要:高性能、高分辨率单快拍前视成像技术是赋能车载雷达发展的关键,但距离/多普勒走动问题会限制相干积分的实施,同时系统分辨率也往往受限于硬件参数难以提高。根据车载毫米波雷达时分多输入多输出(TDM-MIMO)的前视成像体制,该文提出多普勒域补偿和点对点回波校正方法,完成多域信号解耦合,同时完成距离多普勒走动校正和多普勒解模糊。由于有限阵元数及强噪声干扰限制了传统单维度距离角度成像准确性,因此,该文提出一种基于改进贝叶斯匹配追踪方法(I

2、BMP)的多域联合估计算法。该方法基于伯努利-高斯(BG)模型,在最大后验(MAP)准则约束下迭代更新估计参数和支撑域,实现了多维联合信号的高精度重构。仿真和实测结果表明该文方法能够有效解决距离走动问题,并提高雷达前视成像的角度分辨率,具有较强噪声鲁棒性。关键词:毫米波雷达;距离走动;多普勒域补偿;多域联合估计;改进贝叶斯匹配追踪(IBMP)算法中图分类号:TN95文献标识码:A文章编号:2095-283X(2023)05-0971-15DOI:10.12000/JR23097引用格式:李毅,夏伟杰,周建江,等.基于多普勒域补偿的车载雷达距离角度联合成像算法J.雷达学报,2023,12(5):

3、971985.doi:10.12000/JR23097.Reference format:LIYi,XIAWeijie,ZHOUJianjiang,et al.Arange-anglejointimagingalgorithmforautomotiveradarsystemsbasedonDopplerdomaincompensationJ.Journal of Radars,2023,12(5):971985.doi:10.12000/JR23097.A Range-angle Joint Imaging Algorithm for Automotive Radar SystemsBased

4、 on Doppler Domain CompensationLIYiXIAWeijie*ZHOUJianjiangCHUYongyan(College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)(Nanjing Chuhang Technology Co.,Ltd.,Nanjing 211100,China)Abstract:Singlesnapshotforward-lookingimagingtechno

5、logywithhighperformanceandresolutioniscrucialforenablingthedevelopmentofautomotiveradars.However,rangemigrationissuescanlimittheimplementationofcoherentintegrationmethods,andimprovingsystemresolutionisgenerallydifficultduetohardwareparameterlimitations.BasedontheTime-DivisionMultiplexingMultiple-Inp

6、ut-Multiple-Output(TDM-MIMO)forward-lookingimagingsystemsofautomotivemillimeterwaveradar,thispaperproposesDopplerdomaincompensationandpoint-to-pointechocorrectionmeasuresforachievingmultidomainsignaldecoupling.However,theaccuracyoftraditionalsingle-dimensionrangeandangleimagingislimitedbythenumberof

7、finitearrayelementsandsignificantnoiseinterference.Therefore,thispaperproposesamultidomainjointestimationalgorithmbasedontheImprovedBayesianMatchingPursuit(IBMP)method.TheBayesianmethod收稿日期:2023-05-29;改回日期:2023-07-30;网络出版:2023-09-04*通信作者:夏伟杰*CorrespondingAuthor:XIAWeijie,基金项目:江苏省科技成果转化专项基金(BA2021079

8、)FoundationItem:SpecialFundsforTransformationofScientificandTechnologicalAchievementsinJiangsuProvince,China(BA2021079)责任主编:陈洪猛CorrespondingEditor:CHENHongmengTheAuthor(s)2023.ThisisanopenaccessarticleundertheCC-BY4.0License(https:/creativecommons.org/licenses/by/4.0/)第12卷第5期雷达学报Vol.12No.52023年10月Jo

9、urnalofRadarsOct.2023isbasedontheBernoulli-Gaussian(BG)model,andtheestimatedparametersandsupportdomainareiterativelyupdatedinthismethodwhileadheringtotheMaximumaPosteriori(MAP)criterionconstrainttoachievethehigh-precisionreconstructionofmultidimensionaljointsignals.Thefinalsetofsimulationandactualme

10、asurementresultsdemonstratethattheproposedmethodcaneffectivelysolvetheproblemofrangemigrationandimprovetheangleresolutionofradarforward-lookingimagingwhileexhibitingexcellentnoiserobustness.Key words:Millimeterwaveradar;Rangemigration;Dopplerdomaincompensation;Multidomainjointestimation;ImprovedBaye

11、sianMatchingPursuit(IBMP)algorithm 1 引言调频连续波(FrequencyModulatedContinu-ousWave,FMCW)毫米波雷达具有抗干扰能力强、集成度高、成本低等优势,涉及生命体征检测、水文监测和智能驾驶等多种场景14。然而,天线孔径限制了角度分辨率,因此提高雷达系统前视图像分辨率至关重要。随着多输入多输出(Multiple-InputMultiple-Output,MIMO)技术发展,利用收发器件的空间位置信息来构造虚拟阵列,可以具备比真实阵列更高的孔径以实现高角度分辨率。MIMO雷达依赖于发射信号的可分离性,这需要正交波形生成技术支持,本

12、文主要研究已成熟应用的时分复用(Time-DivisionMultiplexing,TDM)策略5下的前视场景。在传统车载MIMO毫米波雷达中,主要采用距离多普勒角度三维快速傅里叶变换(FastFourierTransform,FFT)方法完成目标估计6,对每个脉冲做第1维距离FFT,接着对距离FFT结果做第2维多普勒FFT,然后对每个接收天线回波的二维FFT处理结果做第3维角度FFT,可以检测得到目标的距离、多普勒、角度和信号幅度等信息。然而随着车载毫米波雷达应用场景改变,急需实现高性能高分辨率前视成像,并增强目标探测和识别能力,因此传统的信号处理框架必须改变以满足现代汽车自动驾驶需求,本文

13、从以下两个方面来阐述现有方法的不足。第1个问题是相干处理间隔(CoherentProcess-ingInterval,CPI)内距离多普勒走动问题。车载雷达已成为无人驾驶和高级驾驶员辅助系统的关键推动者,不同于传统的车载毫米波前视、角雷达等近距离跟踪、防撞等简单任务,其应用场景已经从密集的城市环境拓展到高速公路等复杂路况。然而高速运动目标限制了CPI的选取,从而限制了雷达的最大探测距离。此外,它也限制了长时间相干积分方法的实施。这里考虑相干处理的方法,距离走动补偿的主要方法为基于Keystone变换和基于Radon变换方法。Keystone变换原理主要是对每个快时间样本下的慢时间样本进行重新采

14、样7。由于其简单性,Keystone变换技术已成功应用于合成孔径雷达、动目标指示等8。在这些应用中,雷达脉冲重复频率相对目标多普勒频移较大,目标多普勒走动变化缓慢。然而,该算法不适用于车载雷达,因为车载高速目标多普勒频率可能超过脉冲重复频率,发生多普勒模糊,使得Keystone变换无法使用。另一类基于Radon-变换的方法也被广泛应用,如Radon傅里叶变换9、Radon傅里叶逆变换10等。其沿着距离走动曲线相干积分,从而提高了处理增益。然而,在距离慢时间域中,每个不同距离速度的目标对应一个距离走动曲线。因此,基于Radon的方法必须在慢时间内完成所有候选的距离-速度对的相干积分,这会极大增加

15、计算复杂性。第2个问题是高分辨成像。车载毫米波雷达高分辨率环绕成像,远距离探测小型快速移动物体,检测坑洞、道路碎片和头顶障碍物,以及目标分类等各种任务都需要分辨率的前视图像作为输入。传统毫米波雷达主要采用数字波束形成(FFT,Capon或Bartlett滤波器)来实现角度估计,这有利于在嵌入式设备中通过单快拍实现。然而,这些方法都不具备高分辨率角度测量能力,无法突破系统参数决定的瑞利极限。虽然采用子空间的超分辨算法,如多重信号分类方法(MultipleSignalClassification,MUSIC)、迭代自适应方法(IterativeAdaptiveAp-proach,IAA)11等一定

16、程度上突破了物理孔径的角度分辨率,但是在强噪声环境中依然难以获得令人满意的成像结果,甚至强点噪声会引起角度目标个数估计错误。因此为了得到更好的毫米波雷达成像效果,有学者将一维的角度分辨率算法扩展到了距离-角度等高维空间联合估计,其中多维FFT是最直接、最简单的方法,当然也是性能较差的方法。于是衍生出FFT和超分辨率算法结合的方法,例如DFT-ESPIRT、聚类ESPIRT12,13等。然而,这些基于子空间的方法的结果依赖于多快拍估计的协方差矩阵的准确性,这在实际中很难得到满足。根据雷达目标特性理论,可以通过多个聚类点来逼近雷达图像,以满足空间域中的稀疏特征。因此,压缩感知(Compressiv

17、eSensing,CS)有望成为972雷达学报第12卷最有前途的高分辨率成像技术之一,能提供超过瑞利极限的分辨率14,15。文献16给出了不同L1-范数正则下雷达目标角度稀疏重建方法的比较,文献17借用了图像处理中常用的梯度约束的正则化方法,取得了较好的雷达目标轮廓成像效果。这些正则化方法无不例外都会出现噪声放大问题,导致出现大量虚警。文献18采用L1-范数正则和低秩双约束模型,Shu等人19则是将截断奇异值分解和L1-范数正则结合,实现雷达前视超分辨成像的噪声抑制。虽然组合约束可以减弱全局噪声对单一正则的影响,但是对于分布稀疏的强点噪声依旧敏感,对强噪声附近目标存在虚警、漏警,同时增加正则参

18、数会降低算法实用性。另一类通用方法是基于贝叶斯定理,利用场景中目标和噪声的统计特性,将稀疏重建问题转化为解空间估计问题,并构建相对应的目标函数。基于贝叶斯的方法可以根据实际情况,对噪声及目标散射信息参数化建模,可以有效利用噪声的先验统计信息,在低信噪比下信号重构性能好,与正则化方法相比,避免了手工设置正则参数的麻烦,具有比传统CS重构方法更小的估计误差,如稀疏贝叶斯学习(BayesianCompressiveSensing,BCS)20,21算法、快速贝叶斯匹配追踪算法(FastBayesianMatchingPursuit,FBMP)22,23、梯度投影法(GradientProjectio

19、nforSparseReconstruction,GPSR)24,25等。在本文中,首先对车载平台与目标相对运动引起的瞬时多普勒信息和距离走动信息、通道相位跳变等问题进行描述和论证推导,同时提出一种有效简单的基于多普勒域的补偿方法。该方法首先通过对快时间多普勒图进行插值完成多普勒/距离走动校正,并且通过点对点补偿相位完成了多普勒距离解耦合和通道相位校正。更一步,针对现有算法在低信噪比下雷达成像性能较差的问题,研究了基于贝叶斯理论的复杂环境下雷达距离角度成像方法。上述CS方法中,FBMP在低信噪比下也具有更好的重构性能,但是其重复搜索策略导致时间开销较大,因此本文提出一种基于最大后验准则(Max

20、imumAPosteriori,MAP)的改进的贝叶斯匹配追踪算法,解决TDM-MIMO毫米波雷达前视成像超分辨问题。2 TDM MIMO信号模型MtMrf0TpTc常见的车载毫米波MIMO雷达前视成像场景,其具备单次快速成像能力,几何示意图如图1(a)所示。雷达平台采用收发一体发收阵列天线体制,一个具有两个发射天线的FMCWTDMMIMO雷达示例如图1(b)所示,因此对于载频为,调制斜率为,脉冲宽度为,脉冲重复周期为的FMCW信号表示为yRF(t)=rectTp(t)expj(2f0t+t2)(1)yRF(t)ym,n(t)将第m发射阵元和第n接收阵元产生的回波信号与发射信号进行混频处理,再

21、经过低通滤波后即得到回波的差拍信号为ym,n(t)=rectTp(t )expj2(f0+t)2(2)Rqvqq=(2(Rq+vqtf+vqts)+q,1+q,2)/ctstfq,1=2(m 1)vqTpq,2=(m 1)dt+(n 1)drsindtdrdt=Mrdrdr=/2不妨假设一运动目标q与雷达径向距离为,并以恒定的径向速度,从角度远离雷达,则回波时延为,其中c为光速,表示慢时间,表示快时间,表示由于TDM策略下发射天线切换导致的运动残留距离,表示接收发射天线阵元的间距引起的波程差,其中,分别表示发送和接收阵列的阵元间距,并且有和。1st 目标虚拟阵列MIMO阵列qth 目标XYZ发

22、射阵元接收阵元drdt=Mrdr(qq,Rq)(q1,R1)OBTptff0TX1TX2TcTX1TX2(a)毫米波雷达前视成像示意图(a)Configuration of MIMO array andmillimeter-wave radar system(b)TDM策略下FMCW波形示意图(b)Schematic diagram of FMCW waveformunder TDM scheme 图1系统配置示意图Fig.1Systemconfigurationdiagram第5期李毅等:基于多普勒域补偿的车载雷达距离角度联合成像算法9732c2将时间延迟 代入式(2),项可以看作一个附加的

23、固定相位项(由于非常小),可得 ym,n(tf,ts)=expj22Rqctf+(2Rq,m,nc+2vqf0c)tf+2vqtftsc+2vqt2fc+2vqts+(m 1)dt+(n 1)drsinq+2vqTp(m 1)+2Rq j4R2qc2(3)(1)第1个指数项表示由目标初始距离导致的差拍信号,被用来进行距离估计。第5个指数项表示由于相对运动带来的多普勒信息,被用来进行速度估计。第6个指数项表示由于MIMO雷达不同收发天线之间的波程差引起的相位差,一般用来进行目标角度估计。expj2(2Rq,m,nc+2vqf0c)tfRq,m,n=12(q,1+q,2)Vmax=/(4MtTp)

24、Rq,m,n(2)第 2 个 指 数 项,其 中。由车载雷达测量目标速度小,其最大不模糊为,代入中,可知:q,1+q,2=2(m 1)4MtTpTp+(m 1)dt+(n 1)drsin2(1+MrMt)Rq,m,nr2vqf0/c因此,所产生的距离偏移远小于车载雷达距离分辨率,其在此项中可以忽略不计,但使目标的距离估计有一个附加的偏移,影响估计结果。expj22vqtftsc(3)第3个指数项会导致目标在慢时间发生距离走动,使得目标在距离和多普勒频率偏移,会存在散焦和能量泄露问题。expj22vqt2fcTp(4)第4个指数项表示目标在快时间的距离走动信息,在车载毫米波雷达中,由于极短,可以

25、认为目标回波是单频连续波信号,不予考虑。expj22vqTp(m 1)(5)第7个指数项会导致进行角度估计的时候发生不同通道间的相位跳变,影响角度估计精度。传统的雷达信号处理将式(3)简化为3个维度的单频信号。忽略第2项和第3项,距离和速度估计问题可以分别在快时间和慢时间维度解耦,忽略第7项,角度估计可以和速度参数解耦。然而在高性能汽车雷达中,这些忽略项会使得目标回波发生距离走动、相位跳变等现象,导致估计结果性能急剧降低。fs接下来,本文将采用一个更精确的信号描述模型。首先,将式(3)通过MIMO通道合成,得到联合角度距离多普勒三维信号模型,并由采样频率离散化得到:y(p,k,l)=expj2

26、(2Rqc+2vqf0c)kfs+2vqckfsTcl+2vqTcl+pdrsinq+2vqTppMr+2Rq j4R2qc2,with k=0,1,.,K 1;p=0,1,.,MtMr 1;l=0,1,.,L 1(4)其中,表示向下取整,K是每个chirp的ADC采样总数,索引值为k;L是用于多普勒测量的TDMMIMOchirp周期数,索引值为l。3 基于多普勒域补偿的多维联合估计算法 3.1 多普勒相位补偿由于传统毫米波方法缺乏对于距离和多普勒走动校正措施,会导致传统距离-多普勒谱发生频谱展宽,影响估计精度。为进一步分析距离/多普勒走动信息,首先对式(4)沿快时间进行FFT计算,得到距离慢

27、时间图:y(p,f,l)=expj22vqTcl+pdrsinq+2vqTppMr+2Rq sinc(f(2Rqc+2vqf0c+2vqcTcl)Tp)j4R2qc2(5)同样,也可以对式(4)沿慢时间进行FFT计算,得到快时间多普勒图:y(p,k,f)=expj2(2Rqc+2vqf0c)kfs+pdrsinq+2vqTppMr+2Rqj4R2qc2 sinc(f(2vqckfs+2vq)LTc(6)sinc(x)=sinxx其中,。974雷达学报第12卷从式(5)可知,目标距离发生走动的条件为=vqLTcr 1(7)r=c2B其中,表示距离分辨率。同样从式(6)可知目标多普勒发生走动的条件

28、为=2vqTpcd=2vqTpc=vqLTcr=1(8)d=1LTc其中,表示目标多普勒频率分辨率。Rqvq从式(8)可以得到,目标多普勒走动的条件与目标发生距离走动的条件一致。同样注意到式(5)中,距离慢时间图中的距离走动曲线由两个未知因素决定参数,即距离和速度。这意味着在给定一个距离和速度的情况下,只能得到一条对应的距离走动曲线。因此基于Radon和聚焦的方法,要想实现相干积分必须严格按照曲线进行,这会大大增加计算复杂度。相比之下,从式(6)中可以看到多普勒走动曲线仅由目标速度决定,而且运动导致的多普勒频偏、通道相位跳变也只与目标速度相关。因此,接下来采用一种多普勒补偿方法,完成三维信号的

29、解耦合。首先,采用最近邻域或线性插值算法完成多普勒走动校正。在本文中,通过在每个多普勒下,采用8点的sinc插值法完成,如下:(f,2vqckfs+2vq)(f,2vq)(9)假设多普勒插值是精确的,式(6)可以重写为y(p,k,f)=expj2(2Rqc+2vqf0c)kfs+pdrsinq+2vqTppMr+2Rqj4R2qc2 sinc(f 2vq)LTc(10)接下来考虑补偿第2个和第7个指数项,从式(3)中直接进行相位补偿是不可能的。因此,利用其多普勒相关性,构建通道-快时间-多普勒相位补偿系数如下:y(p,k,f)=expj2(ffsk+Tpff0pMr)(11)通过元素点乘完成相

30、位校正,其计算成本可以忽略不计。因此,完全补偿后的相位为yc(p,k,f)=y(p,k,f)y(p,k,f)expj22Rqckfs+pdrsinq+2Rqj4R2qc2 sinc(f 2vq)LTc(12)3.2 多普勒模糊补偿在本文所采用的TDM-MIMO策略下,所能估计的最大不模糊速度为Vmax=4MtTp=4Tc(13)vqvtrue=vq 2Vmax当发生模糊的速度所对应的真实速度为时,从式(6)可以得到:y(p,k,f)=expj2(2Rqc+2vqf0c)kfs+pdrsinq+2vqTppMr+2Rq j4R2qc2 sinc(f(2(vq 2Vmax)ckfs+2vq)LTc

31、(14)vqvtrue比较式(6)和式(14),可以看到多普勒和的走动曲线的起始速度(模糊后的)是一致的,但是两者具有不同的斜率。在不进行模糊补偿下,如果按照式(9)进行插值操作,会使得补偿后的走动曲线偏差更大,只有在正确的多普勒下走动曲线才会被校正。也正是根据这种特性,可以从最终的多普勒响应中,选取幅度更大的那个作为正确值。值得注意的一点,不正确的多普勒估计也会影响式(11)所进行的通道相位补偿,具体见第5节。3.3 距离角度联合估计模型从式(12)可以看到,回波信号在3个维度实现了解耦合,后续可按照常规方法完成距离FFT、二维恒虚警检测(ConstantFalseAlarmRate,CFA

32、R)和角度FFT等操作,检测出目标的距离、多普勒、角度和信号幅度等信息。但是由于发射阵元/接收机阵元或发射带宽较窄等雷达参数限制了系统分辨率,导致传统FFT信号处理方法得到的图像质量较差,只能实现对强散射点的检测,远远满足不了前视成像的需求。因此基于式(12),本文提出了一种距离角度联合估计算法。首先通过CFAR或者峰值检测方法提取出候选多普勒单元,然后对于特定的多普勒单元,进行距离角度联合估计。首先假设某一多普勒单元内,存在Q个可能目标,因此:ys(p,k)=Qq=1qexpj2(2Rqckfs+pdrsinq)+jq+w(p,k)with k=0,1,.,K 1;p=0,1,.,MtMr

33、1(15)第5期李毅等:基于多普勒域补偿的车载雷达距离角度联合成像算法975q其中,表示初始相位,w表示加性高斯白噪声。MtMr使用信号模型(15),将遍历个虚拟通道的快时间序列的观测数据形成矩阵表示:Ys=DXG+W=d1d2.dQ1 Xg1g2.gQ2H+W(16)YsX CQ1Q2dq,gqqRq其中,,W分别表示回波信号和噪声信号的二维矩阵形式,是Q个稀疏目标的距离角度空间散射矩阵,并且有分别表示角度为和距离维下的导向矢量:dq=1 ej2drsinq.ej2drsinq(MtMr1)Tgq=1 ej4Rqc1fs.ej4Rqc(K1)fsT利用Kronecker积的性质,可以得到Y=

34、vec(Ys)=vec(DXG)=(GT D)vec(X)=Ax(17)Y C(MtMrK)1x=vec(X)=(x1x2.xQ)HA=GT DMtMrK(Q(u 1)+v)dTu gv其中,是回波信号的矢量化,是目标散射系数矩阵矢量化,是一个行Q列的基矩阵,其中列由计算得到。Y=Ax综上所述,式(17)可以写成模型,因此可以引入CS来解决传统研究方法的不足。而过度依赖于预设参数的非贝叶斯方法的解决方案在非理想条件下会导致较差的性能,因此为了获得独立于被估计参数的性能度量,通常优选基于贝叶斯框架的方法,并可实现超出雷达参数(例如带宽和天线阵元的数量)设置的极限分辨率,因此本文提出基于MAP的贝

35、叶斯匹配追踪算法来进行求解。综上所述,针对车载毫米波雷达前视成像下的距离走动以及高性能成像问题,提出了基于多普勒补偿的多维联合估计算法,其算法流程图如图2所示。算法主要分为3个部分:(1)多普勒FFT以及用于速度解模糊的多普勒拓展;(2)采用插值完成多普勒走动校正以及用于解决距离、多普勒、角度解耦合的相位补偿;(3)采用基于MAP的贝叶斯匹配追踪算法来完成距离角度联合估计。4 基于MAP的贝叶斯匹配追踪算法s=s1s2.sQT 0,1Qsqaqp(sq)=Ber(pq)通过引入伯努利-高斯(Bernoulli-Gaussian,BG)模型,将二进制稀疏向量定义为,其中指示原子是激活或者失活状态

36、(分别对应1和0),并服从伯努利分布:。假设x服从如下模型:p(x|s)=Qq=1p(xq|sq)(18)xq|sqN(0,2sq)pqQq=1=p120=0其中,为了简化模型令,。p(x|Y,s)通过式(13)可知,条件概率分布的均值如下:E x|Y,s=R(s)AH1(s)Y(19)R(s)R(s)q,q=2sq(s)=AR(s)AH+2IQ其中,为对角矩阵,满足,。为了得到联合矢量x的最大似然估计,使得 xmap=E x|Y,smap(20)smap2Qsmap结合式(13)和式(14),可知唯一的困难是的求解。然而隐向量s有种取值,贪婪遍历选择的方法是不太可能的。因此下文将使用基于树结

37、构的快速搜索算法寻找最可能的一个较小支持集,并同时计算该状态下的相关概率。p(s|Y)smap首先通过选择具有最大概率的sS来定义:smap=argmax p(s|Y)根据贝叶斯定理,其后验概率可以写成p(s|Y)=p(Y|s)p(s)p(Y)(21)所以,为了简洁,采用对数后验来定义一个搜索过程的度量,如下所示:(s)=Inp(Y|s)p(s)=Inp(Y|s)+In p(s)=MIn Indet(s)YH1(s)Y+Qq=1Inp(sq)(22)因此,确定s的搜索策略如下:s=0步骤1初始化参数向量s,即从。(s)s1=i1步骤2依次从0到1激活s向量中的一个元素,并得到最大度量的下标和相

38、对应的矢量。s1Q 1步骤3选择中的剩余0元素,产生个多普勒FFT多普勒拓展基于MAP的贝叶斯匹配追踪角度距离多普勒三维矩阵多普勒走动校正多普勒相位补偿多普勒FFT多普勒拓展距离角度二维联合估计图2基于多普勒补偿的多维联合估计算法流程图Fig.2TheflowchartofjointestimationalgorithmbasedonDopplercompensation976雷达学报第12卷(s)s2=i1,i2大小为2的可选项,产生导致最大的。sD=i1,i2,.,iD|s|0步骤4重复进行,直到产生,其中D可以选择以稍大于基数。smap=sD最终,基于树结构搜索策略如图3所示,其中Q=5

39、和D3。q(s)=(s)(s)ssq=1,sq=0从上述迭代过程观察到,每次更新过程只涉及s中一个元素从0到1的变化。因此,只需要更新增量而不是整个度量来提高计算速度。首先定义增量为:,其中和s除了q坐标元 素 外 其 余 元 素 都 一 样,并 且 满 足。2=21 20令,有(s)=(s)+2aq(aq)H(23)然后根据矩阵逆定理,可得(s)1=1(s)qcq(cq)H(24)其中cq=(s)1aqq=2(1+2(aq)Hcq)1(25)所以结合式(18)和式(19),可得q(s)=(s)(s)=Inq2+q?(YHcq)?22+In(p11 p1)(26)cqO(Q2)O(Q)通过式(

40、19)可知,的每一次计算复杂度是,不利于实时计算。因此,提出基于迭代计算的一种复杂度的更新方法,如图4所示:spreqpresprepreqQq=1cpreqQq=1cq在图4中,假设是s的前一状态,只有第的元素修改。显然,可以计算并存储由状态变化所产生的相应和。所以的更新方程如下:cq=(spre)1 preqprecpreqprecpreHqpre)aq=(spre)1aq preqprecpreqprecpreHqpreaq=cpreq preqprecpreqprecpreHqpreaq(27)s=0整个算法开始于,初始化如下:(0)=(MIn MIn 212Y 22)+QIn(1 p

41、1)(28)该方法与FBMP相比,减少了贪婪寻找次数,计算复杂度下降D倍(D为重复搜索次数)。因此,改进后的贝叶斯匹配追踪方法(IBMP)放弃寻找多个支撑域下的基于MMSE的估计量,反而采用基于MAP的单一估计,在保持重构精度的同时可以提高计算速度,具体的算法处理步骤如算法1所示。5 实验与分析本节通过简单的仿真信号,以验证所提出的方法的有效性,重点讨论针对不同SNR的估计性能比0123451345 5145S 22,3s2,3,5图3基于树结构的搜索策略Fig.3Tree-search-basedsearchstrategyssspreprecqpreqpreqcqpreqcqcq图4的迭代

42、更新示意图cqFig.4Theiterativeprocessofcalculating算法 1 基于MAP的贝叶斯匹配追踪方法Alg.1 The Bayesian Matching Pursuit(BMP)based on MAP(0)=(MIn MIn 212Y 22)+QIn(1 p1)初始化:cq=aq2,q=21(1+21aHqcq)1q=(0)+Inq21+q?(YHcq)?22+In(p11 p1)=,s(0)=0更新迭代过程:q=max_index(q)=q,s(d)=s(d1)+q,(d)=qcq=cq qcq(cq)Haqq=21(1+21(aq)Hcq)1q=(d)+In

43、q2+q?YHcq?22+In(p11 p1)输出:xmap=21ii(ci)HY第5期李毅等:基于多普勒域补偿的车载雷达距离角度联合成像算法977=0.1?AHx?较,最后通过实测数据进一步验证该方法的高性能前视成像能力。所有实验结果均与常规2DFFT方法、GPSR方法、BCS方法以及FBMP方法进行对比。GPSR算法中的L1-惩罚选择为,FBMP的重复搜索次数D=5。5.1 复杂度分析O(MtMrKL)O(MtMrKLlog(L)+MtMrKL)O(MtMrKL(log(L)+MtMrK)+MtMrKL)O(MtMrKLlog(MtMrKL)本文是通过线性插值以及元素点乘完成相位多普勒相位

44、补偿,其计算复杂度为,因 此 基 于 F F T 的 多 普 勒 处 理 计 算 复 杂 度 为。借助于贝叶斯匹配追踪算法完成距离角度联合估计,其计算复杂度与后向投影(BackProjection,BP)算法相当,因此整个算法总体计算复杂度是。相比较于常规3DFFT的计算复杂度为,本文算法的计算复杂度较大,即以牺牲算力为代价来谋取较好的算法性能。5.2 仿真分析本节实验中,利用仿真点目标来验证所提方法的性能。雷达信号的参数配置见表1,其中信噪比(Signalto-NoiseRatio,SNR)设置为5dB。此处采用2发4收MIMO阵列,可以计算出系统角度分辨率15.7,距离分辨率为0.1m。为

45、了初步验证多普勒补偿方法的有效性,首先分别选取了目标在距离10,10,10,15m,速度为16,16,7,15m/s,角度为10,10,20,20的4个目标。由系统参数可知,所有目标都会发生距离走动现象,可以观察到3条快时间多普勒曲线都发生了倾斜,从曲线倾斜斜率和初始多普勒判断,两条多普勒曲线发生了多普勒模糊。首先对所有候选多普勒单元通过多普勒模糊拓展,使得原始的多普勒测量范围扩大一倍。在经过本文提出的多普勒走动补偿后,可以观察到在只有真实目标的多普勒曲线才能被正确校正,而多普勒曲线和初始多普勒不匹配时,多普勒走动现象不会被补偿甚至会加剧,如图5(b)所示。与此同时,原始距离多普勒算法得到的结

46、果目标在距离和多普勒维度都发生了能量泄露,二维频谱发生明显展宽,如图5(c)所示。在经过多普勒补偿后,目标在正确的多普勒和距离上能量更为集中,频谱走动得到较好的抑制,图5(d)中红色圆圈标注正确目标位置,白色圆圈标注多普勒模糊假目标。因此,可以很简单地通过多普勒幅度进行比较,选取的幅度较大的多普勒目标作为无模糊的目标。值得说明的一点是图5(d)中的目标2是包含预设信号的前两组信号,他们有相同的速度和距离,但是具有不同的角度。以目标1为例,图6(a)显示了目标1的速度剖面,即图5(d)在15m处的水平切片。可以看到一个强烈的虚假峰值在2.56m/s处,这是真实目标15m/s的模糊目标。同理,对于

47、目标2和目标3,图6(b)显示了图5(d)在10m处的水平切片,同样可以观察两个目标的虚假模糊位置。可以计算出虚假峰值比真实峰值低约7dB。因此,通过在两个可能性中选择更强的峰值能有效地确定真实的目标速度。上述结果展示了多普勒走动校正对距离多普勒图成像的影响,接下来可以看到多普勒补偿对于通道相位跳变的影响,如图7所示。在上文多普勒距离正确目标位置图中,首先选取距离为10m、速度为7m/s的无多普勒模糊目标。图7(a)展示了原始8个阵列相位以及FFT角度估计结果,可以看到原始相位由于TDM策略的实施会导致虚拟接收通道之间发现相位跳变,再通过式(12)进行点对点的补偿后,得到的FFT的频谱估计结果

48、更为准确、旁瓣更低。观察到上述前两个仿真目标,位于同一个距离多普勒单元,但是此时目标的速度为16m/s,发生了多普勒模糊,同样看到进行模糊校正和无模糊校正下的相位补偿结果对比,如图7(b)所示,与单个角度下的结果一致,补偿后的FFT估计结果能够正确分辨两个目标。从图7(b)可以看到,如果不经过多普勒解模糊,错误地进行多个通道之间补偿,会导致更为剧烈的相位跳变,加剧空间谱估计误差,影响角度分辨能力。需要说明的是,本文并不是利用FFT进行空间谱估计,这里采用FFF进行分析是为了更清晰地展现本文提出的多普勒补偿的方法对于空间相位的影响,从而为后续进行高分辨率距离角度成像提供输入。表 1 仿真实验雷达

49、参数Tab.1 Radar parameters for simulation experiment雷达参数数值载频(GHz)77带宽(MHz)1500MIMO天线配置2T4R脉冲宽度(s)55脉冲采样点数K256脉冲个数L256角度分辨率()15.7距离分辨率(m)0.1最大不模糊速度(m/s)8.85978雷达学报第12卷最后,为了初步验证IBMP算法的距离角度联合估计性能,不妨假设所有的目标位于同一多普勒单元内,仿真目标在距离角度空间中呈现X形分布,如图8(a)所示。在相同距离内,最小间隔角为12,低于系统角度分辨率15.7,因此利用传统2DFFT结合CFAR的方法,无法将其分开,如图8

50、(b)所示。图8分别给出了GPSR方法、BCS方法、FBMP方法以及本文提出的IBMP方法的成像结果对比。可以明显看出,强噪声环境使得GPSR方法、BCS方法无法清晰地对场景目标进行重构,在成像的散射目标附近,存在虚警、漏警的情况,导致成像效果较差,FBMP方法虽然能恢复大部分点目标,但对低于角度分辨率的两个目标也无法完全重建。相比而言,IBMP方法得到的点目标清晰可分辨,且目标能量基本得到聚集,而且相较于FBMP方法具有更低的计算复杂度。-15.2-15.15-15.1-15.05-15-14.95-14.9-14.85速度(m/s)14.7514.814.8514.914.951515.0

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服