ImageVerifierCode 换一换
格式:PPT , 页数:45 ,大小:14.21MB ,
资源ID:2261363      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2261363.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2018届高考数学一轮复习-第九章-解析几何-9.6-双曲线-文-北师大版.ppt)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2018届高考数学一轮复习-第九章-解析几何-9.6-双曲线-文-北师大版.ppt

1、9.69.6双曲线双曲线知识梳理双基自测231自测点评1.双曲线的定义我们把平面内与两个定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合叫作双曲线.定点F1,F2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.注:若点M满足|MF1|-|MF2|=2a,|F1F2|=2c,其中a,c为常数,且a0,c0.(1)当ac时,点M的轨迹不存在.知识梳理双基自测自测点评2312.双曲线的标准方程和几何性质 知识梳理双基自测自测点评231知识梳理双基自测自测点评2313.常用结论(1)渐近线的斜率与离心率的关系(2)若P为双曲线上一点,F为其对应的焦点,则|PF|c-

2、a.(3)区分双曲线中a,b,c的关系与椭圆中a,b,c的关系,在椭圆中,a2=b2+c2,而在双曲线中,c2=a2+b2.(4)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.()(5)方程x2+Bxy+y2+Dx+Ey+F=0表示圆的充要条件是B=0,D2+E2-4F0.()2知识梳理双基自测3415自测点评 答案 答案关闭(1)(2)(3)(4)(5)1.下列结论正确的画“”,错误的画“”.(1)已知圆的方程为x2+y2-2y=0,过点A(1,2)作该圆的切线只有一条.()(2)方程(x+a)2+(y+b)2=t

3、2(tR)表示圆心为(a,b),半径为t的一个圆.()知识梳理双基自测自测点评234152.已知F为双曲线C:x2-my2=3m(m0)的一个焦点,则点F到C的一条渐近线的距离为()答案解析解析关闭 答案解析关闭知识梳理双基自测自测点评23415A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等 答案解析解析关闭 答案解析关闭知识梳理双基自测自测点评23415 答案解析解析关闭 答案解析关闭知识梳理双基自测自测点评23415 答案解析解析关闭 答案解析关闭知识梳理双基自测自测点评1.要熟练掌握双曲线中参数a,b,c的内在关系及双曲线的基本性质.2.理解离心率的大小范围,并能根据离心率的

4、变化来判断双曲线的扁狭程度.3.在双曲线的定义中,要注意不是距离的差,而是距离差的绝对值.考点1考点2考点3例1(1)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为.(2)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos F1PF2=.思考如何灵活运用双曲线的定义求方程或者解焦点三角形?考点1考点2考点3解析:(1)如图所示,设动圆M与圆C1及圆C2分别外切于A和B.根据两圆外切的条件,得|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.因为|M

5、A|=|MB|,所以|MC1|-|AC1|=|MC2|-|BC2|,即|MC2|-|MC1|=|BC2|-|AC1|=2,所以点M到两定点C1,C2的距离的差是常数且小于|C1C2|.根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与C2的距离大,与C1的距离小),其中a=1,c=3,则b2=8.考点1考点2考点3考点1考点2考点3考点1考点2考点3考点1考点2考点3解题心得双曲线定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF1|-|PF2|=2a,运用平方的方法,建立与|

6、PF1|PF2|的联系.考点1考点2考点3对点训练对点训练1(1)已知F1,F2分别为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,且F1PF2=60,则|PF1|PF2|等于()A.2B.4C.6D.8(2)已知F为双曲线C:的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则PQF的周长为.答案:(1)B(2)44 考点1考点2考点3解析:(1)由题意知a=1,b=1,c=2,故|F1F2|=22.在PF1F2中,由余弦定理得|PF1|2+|PF2|2-2|PF1|PF2|cos 60=|F1F2|2=8,即|PF1|2+|PF2|2-|PF1|

7、PF2|=8,由双曲线定义得|PF1|-|PF2|=2a=2,两边平方得|PF1|2+|PF2|2-2|PF1|PF2|=4,-,得|PF1|PF2|=4.考点1考点2考点3(2)如图所示,设双曲线右焦点为F1,则F1与A重合,坐标为(5,0),则|PF|=|PF1|+2a,|QF|=|QF1|+2a,所以|PF|+|QF|=|PQ|+4a=4b+4a=28,故PQF周长为28+4b=44.考点1考点2考点3思考双曲线的离心率与渐近线的方程有怎样的关系?答案解析解析关闭 答案解析关闭考点1考点2考点3思考求双曲线的离心率需要建立谁与谁的关系?答案解析解析关闭 答案解析关闭考点1考点2考点3思考

8、求双曲线方程的一般思路是怎样的?答案解析解析关闭 答案解析关闭考点1考点2考点3考向四利用渐近线与已知直线位置关系求离心率范围思考如何求双曲线离心率的取值范围?答案解析解析关闭 答案解析关闭考点1考点2考点32.求双曲线方程的一般思路是利用方程的思想,把已知条件转化成等式,通过解方程求出a,b的值,从而求出双曲线的方程.3.涉及过原点的直线与双曲线的交点,求离心率的范围问题,要充分利用渐近线这个媒介,并且要对双曲线与直线的交点情况进行分析,最后利用三角或不等式解决问题.考点1考点2考点3考点1考点2考点3考点1考点2考点3考点1考点2考点3考点1考点2考点3思考直线与双曲线的位置关系的判断的常

9、见方法有哪些?考点1考点2考点3考点1考点2考点3考点1考点2考点3考点1考点2考点3解题心得直线与双曲线的位置关系的判断和直线与椭圆的位置关系的判断方法类似,但是联立直线方程与双曲线方程消元后,注意二次项系数是否为0.对于中点弦问题常用“点差法”.考点1考点2考点3考点1考点2考点3考点1考点2考点3考点1考点2考点3考点1考点2考点3考点1考点2考点34.若利用弦长公式计算,在设直线斜率时要注意说明斜率不存在的情况.5.当直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.典例2直线l:y=kx+1与双曲线C:2x2-y2=1的右支交于不同的两点A,B.(1)求实数k的取值范围;(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服