ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:505.50KB ,
资源ID:2260011      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2260011.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数列知识点.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数列知识点.doc

1、_数列知识点一、基本概念:数列的定义及表示方法;数列的项与项数;有穷数列与无穷数列;常数列、递增(减)数列、摆动数列、循环数列;通项公式;前项和公式二、任意数列的通项与前项和的关系:若满足由推出的,则需要统一“合写”; 若不满足,则数列的通项应分段表示。三、等差数列1、等差数列及等差中项定义注:根据定义,当我们看到形如:、时,应能从中得到相应的等差数列。2、等差数列的通项公式:、 (其中为首项、为已知的第项) 当时,是关于的一次式;当时,是一个常数。3、等差数列的前项和公式: 当时,是关于的二次式且常数项为0; 当时(),是关于的正比例式。4、等差数列中,若,则5、等差数列的公差为,则任意连续

2、项的和构成的数列、仍为等差数列,公差为。6、等差数列的公差为,前项和为,则数列是等差数列,公差为。特别地、组成等差数列。7、两个等差数列与的公差分别为和,则数列为等差数列,且公差为8、等差数列的任意等距离的项(项数组成等差数列)构成的数列仍为等差数列。如、9、为等差数列,公差为,则数列 ()是等比数列,公比为。10、 在等差数列中: 若项数为,则 若项数为,则 11、两个等差数列与的前项和分别为、,则(略证:)12、在等差数列中,有关的最值问题(1)邻项变号法 当、时,满足 的项数使得取最大值. 当、时,满足 的项数使得取最小值.(2)利用(时,是关于的二次函数)进行配方(注意应取正整数)四、

3、等比数列1、等比数列及等比中项定义:注:根据定义,当我们看到形如:、应能从中得到相应的等差数列。2、等比数列的通项公式: (其中为首项、为已知的第项,)关于等比数列的单调性:当时,为常数列 当时,为摆动数列;当且时,为递增数列; 当且时,为递减数列;当且时,为递增数列; 当且时,为递减数列;3、等比数列的前项和公式:当时, (是关于的正比例式); 当时, 4、等比数列中,若,则5、等比数列的公比为,且,则任意连续项的和构成的数列、仍为等比数列,公比为。6、两个等比数列与的公比分别为和,则数列、仍为等比数列,公比分别为、。7、等比数列的任意等距离的项(项数组成等差数列)构成的数列仍为等比数列。如

4、、8、等比数列的公比为,且,则 (且) 是等差数列,公比为。9、在等比数列中: 若项数为,则 若数为则,五、求数列的最大、最小项的方法:1、比差法: 例:已知数列的通项公式为:,求数列的最大项。 2、比商法: ()例:已知数列的通项公式为:,求数列的最大项。 3、利用函数的单调性: 研究函数的增减性例:已知数列的通项公式为:,求数列的最大项。六、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。1、分组法求数列:通项虽然不是等差等比数列,但通过拆分可以化为由等差、等比的和的形式,再分别用公式法求和。例:已知数列的通项为:,求例:在等差数列中,依次抽取这个

5、数列的第,项,组成数列,求数列的通项和前项和2、错位相减法:利用等比数列前项和公式的推导方法求解,一般可解决一个等差数列和一个等比数列对应项相乘所得数列的求和。 例:已知数列的通项为:,求 说明:(1)一般地,如果数列是等差数列,是等比数列且公比为,求数列的前项和时,可采用这一思路和方法。具体做法是:乘以常数,然后错位相减,使其转化为等比数列问题求解。要善于识别题目类型,特别是当等比数列部分中公比为负数的情形更值得注意。(2)在写出“”与“”的表达式时,应特别注意将两式“错项对齐”,以便于下一步准确写出“”的表达式;3、裂项相消法:将数列的通项裂成两项之差求和时,正负相消,剩下首尾若干若。常见

6、裂项有:、例:已知数列的通项为:,求前和 例:在等差数列中、,若,求数列的前和 4、倒序相加法:利用等差数列前项和公式的推导方法求解,将数列正着写,倒着写再相加。 例:中,已知,求的值5、有关绝对值的问题: 例:在等差数列中、,(1)求数列前和;(2)求数列前和;七、由数列递推关系式求通项公式。1、利用等差等比定义求通项公式;2、用累加法求型通项;3、用累乘法求型通项4、用构造等比数列求型数列通项;5、通过求;6、取倒数转化为等差数列 3数列的前项和为,()(1)求数列的通项公式(2)等差数列的各项为正数,且,又,成等比数列,求(3)求数列的前项和3解:(1)() () -得: 即() () 即 (), ()数列是等比数列,首项为1,公比为3(2)数列为等差数列,且设,故,又,成等比数列 即解出(舍去) (3) 由-得即Welcome ToDownload !欢迎您的下载,资料仅供参考!精品资料

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服