1、 塔吊基础专项施工方案(补充方案)目 录专家论证意见2一、工程概况3(一)各方主体单位3(二)现场概况3(三)建筑设计概况3二、对塔机基础地基承载力重新复核5专家论证意见1、 根据已安装的现场实际,重新复核塔机基础地基承载力是否符合;一、工程概况(一)各方主体单位 项目名称:九江中航城一期建设单位:九江中航城地产开发有限公司设计单位:深圳市华阳国际工程设计有限公司监理单位:江西中昌工程咨询监理有限公司施工单位:浙江城建建设集团有限公司租赁单位:江西鸿胜建筑机械租赁有限公司安拆单位:浙江省建设机械集团有限公司(二)现场概况本项目位于九江市八里湖新区,总用地面积为44378.29平方米。基地东临长
2、江路,其中长江路东侧为新建小区,已有住户,市政条件较完善。南面为空地,原先为水塘,是淤泥土。北面为十里河南路,十里河南路北侧是一个公园,南面为二期待开发,西面为三期、四期待开发。建筑物周围施工场地狭窄,基坑施工期间只有1栋2栋3栋6栋商业楼位置设置一条临时施工道路(主体施工时此临时道路将取消),一期工程南面与二期工程相连位置,无法设置施工道路。现场在3#、4#楼淤泥带长度573米、面积约18386平方米,此处位置桩已成型给换填带来很大阻力,影响土方开挖进度;现土方标高高于路面标高,基坑支护未进行施工。现场水源所在位置为长江大道与十里河南路交接处,在甲方围墙外侧;甲方提供总配电箱位置为5#楼B座
3、商铺位置,总功率为1000kvA,未能满足施工高峰期要求,建议再增设一台630KVA变压器。(三)建筑设计概况九江中航城一期由住宅大底盘(地下车库)、6栋高层住宅楼和局部二层商铺组成。其中地下车库为一层,主要用途为地下停车库,塔楼为6栋(1#6#)高层住宅楼。1#6#塔楼明细表:栋号层数建筑高度(m)建筑面积()层高情况(m)使用功能1#地上33层99.55027129.502.950住宅、商业、架空绿化2#地上33层99.55026845.522.950住宅、商业、架空绿化3#地上33层99.55023978.872.950住宅、商业、架空绿化4#地上33层99.55025522.682.9
4、50住宅、商业、架空绿化5#地上33层99.55026159.382.950住宅、商业、架空绿化6#地上33层99.55027142.662.950住宅、商业、架空绿化4#5#商业楼地上2层8.1504891.08一层 4.800商业二层 4.200地下室地下一层3.90033244.353.900车库住宅建筑面积约为158709.57平方米,结构系为钢筋混凝土剪力墙结构,基础形式为独立承台伐板基础,抗震等级为三级,抗震烈度为6度,建筑耐火等级为一级。地下车库统称为住宅大底盘,住宅大底盘为地上一层,建筑面积33244.35 m2,框架结构。本项目工程总建筑面积为195380.74平方米。本工程
5、设计标高0.000相当于绝对标高(黄海标高)24.650米。根据现场6幢楼平面位置关系,本项目计划安装6台塔吊,分别编号为1#塔吊、2#塔吊、3#塔吊、4#塔吊、5#塔吊、6#塔吊。6台塔吊均采用浙江建设机械有限公司研制生产的ZJ5710型塔式起重机。1#塔吊安装在1#B座楼南侧,2#塔吊安装在2#B座楼南侧,3#塔吊安装在3#楼B座南侧,4#塔吊安装在4#楼A座南侧,5#楼安装在5#楼A座南侧,6#楼安装在6#楼A座北侧,6台塔吊均位于地下室内,基础顶于结构底板同一标高。二、对塔机基础地基承载力重新复核一、根据九江八里湖新区一期、二期、三期、四期岩土工程勘察报告桩端持力层为中风化粉砂质泥岩层
6、(11);据钻探揭露,场地地层自上而下依次由人工填土、第四系冲积层、第三系新余群(E)泥质粉砂岩组成各地层的野外特征分述如下:1人工填土(Qml)(为地层编号,下同):为素填土,褐红、褐黄色,色杂,由粘性土含10-20%碎石等组成,局部地段表层为杂填土,主要由碎砖、砼块(块径0.20-1.50m)等生活垃圾及建筑垃圾混10-30%粘性土组成。系近期堆填,结构松散,密实度不均匀,未完成自重固结。场地内普遍分布,各钻孔均遇见该层,层厚1.4010.80m。2第四系冲积层(Qal):(1)粉质粘土:褐红、褐黄色、可塑状态,具灰白色斑纹,中间夹少量卵石。稍光滑、中等干强度、韧性中等、无摇振反应。钻孔Z
7、K1ZK18、ZK20ZK24、ZK26、ZK30、ZK32、ZK34ZK82号遇见该层,层厚1.0012.10m。粉质粘土: (2)粉质粘土-1:褐灰色、灰黑色,干强度中等,韧性中等,摇震无反应,稍有光泽,呈湿,软塑状态。钻孔ZK18、ZK19、ZK24ZK33、ZK41、ZK50、ZK82号遇见该层,层厚1.007.80m。(3)卵石:褐黄、浅黄色、稍密状态、饱和。卵石直径40-200mm,其含量占50%、2.020mm的占15%,余为细颗粒,主要为圆砾及砾砂,呈次棱角次圆状,成份以石英、砂岩及硅质岩为主,级配良好,局部含少量粘土。各孔均遇见该层,层厚2.006.10m。(4)粉质粘土:褐
8、红、褐黄色、可塑状态,不均匀夹卵石,具灰白色斑纹。稍光滑、中等干强度、韧性中等、无摇振反应。除钻孔ZK19、ZK40、ZK43、ZK63号外其余各孔均遇见该层,层厚0.501.70m。(5)圆砾:浅黄、褐黄色、饱和、稍密状态。含卵石20-35%,卵石直径20-25mm,呈次棱角次圆状,成份以石英、砂岩及硅质岩为主,级配良好,局部夹粘性土。各孔均遇见该层,层厚8.0014.40m。(6)粉质粘土:黄、灰白色,硬塑状态。见铁锰质染膜及灰白色斑纹或斑团。稍有光滑、中等干强度、韧性中等、无摇振反应。各孔均遇见该层,层厚4.9011.30m。(7)卵石:褐黄、浅黄色、稍密中密状态、饱和。混砾砂,局部粘粒
9、稍高,卵石直径50-150mm,呈次棱角次圆状,成份以石英岩为主,级配良好。各孔均遇见该层,层厚3.809.00m。3.第三系(E)泥质粉砂岩:褐红、紫红色,主要矿物成分为石英、长石、云母及粘土矿物等,细粒结构,局部粗粒结构,巨厚层状构造,泥质、铁质胶结,胶结较好。该层具有失水易干裂、浸水易软化的特性。按其风化程度不同,本次钻探揭露其全风化、强风化及中风化层,其野外特征分述如下:(1)全风化(r4)泥质粉砂岩:褐红、紫红色,矿物成分已风化成土。岩芯呈土柱状。局部夹强风化岩块。属极软岩。各孔均遇见该层,层厚0.504.30m。(2)强风化(r3)泥质粉砂岩:褐红、紫红色,矿物成分大部分已风化变质
10、,风化裂隙极发育。岩芯呈碎块状、块状及土柱状,岩块手可折断,冲击钻进困难,合金回转钻进较易。局部夹中风化岩块。属极软岩,岩体极破碎。各孔均遇见该层,层厚0.906.70m。(3)中风化(r2)泥质粉砂岩:褐红、紫红色,节理裂隙较发育,岩土较完整,岩石质量指标RQD=50-75,为较差的,为极软岩,岩体基本质量等级为级,合金钻进容易,岩芯呈短柱状、柱状及块状,手可捏碎,局部夹强风化块状及碎块状。原岩结构较清晰,锤击声较清脆,岩芯呈柱状、短柱状,少量块状。各孔均遇见该层,揭露层厚5.00-9.50m。上述各地层的分布状况及野外岩性特征描述详见工程地质剖面图、钻孔柱状图(见附图)。(一)、1#塔吊桩
11、基础计算书塔吊型号: ZJ5710 塔机自重标准值:Fk1=449.00kN 起重荷载标准值:Fqk=60.00kN 塔吊最大起重力矩:M=954.00kN.m 塔吊计算高度: H=40.5m 塔身宽度: B=1.60m 非工作状态下塔身弯矩:M1=1668kN.m 桩混凝土等级: C35 承台混凝土等级:C35 保护层厚度: 50mm 矩形承台边长: 5.0m 承台厚度: Hc=1.350m 承台箍筋间距: S=549mm 承台钢筋级别: HRB335 承台顶面埋深: D=0.000m 桩直径: d=0.800m 桩间距: a=3.200m 桩钢筋级别: HRB335 桩入土深度: 10.4
12、0m 桩型与工艺: 泥浆护壁钻(冲)孔灌注桩 计算简图如下: 二. 荷载计算 1. 自重荷载及起重荷载 1) 塔机自重标准值 Fk1=449kN 2) 基础以及覆土自重标准值 Gk=551.3525=843.75kN 3) 起重荷载标准值 Fqk=60kN 2. 风荷载计算 1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) =0.81.481.951.540.2=0.71kN/m2 =1.20.710.351.6=0.48kN/m b. 塔机所受风荷载水平合力标准值 Fvk=qskH=0.4840.50=19.35kN c.
13、基础顶面风荷载产生的力矩标准值 Msk=0.5FvkH=0.519.3540.50=391.91kN.m 2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m2) =0.81.511.951.540.35=1.27kN/m2 =1.21.270.351.60=0.85kN/m b. 塔机所受风荷载水平合力标准值 Fvk=qskH=0.8540.50=34.56kN c. 基础顶面风荷载产生的力矩标准值 Msk=0.5FvkH=0.534.5640.50=699.74kN.m 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆
14、力矩标准值 Mk=1668+0.9(954+391.91)=2879.32kN.m 非工作状态下,标准组合的倾覆力矩标准值 Mk=1668+699.74=2367.74kN.m三. 桩竖向力计算 非工作状态下: Qk=(Fk+Gk)/n=(449+843.75)/4=323.19kN Qkmax=(Fk+Gk)/n+(Mk+Fvkh)/L =(449+843.75)/4+(2367.74+34.561.35)/4.52=856.78kN Qkmin=(Fk+Gk-Flk)/n-(Mk+Fvkh)/L =(449+843.75-0)/4-(2367.74+34.561.35)/4.52=-210
15、.40kN 工作状态下: Qk=(Fk+Gk+Fqk)/n=(449+843.75+60)/4=338.19kN Qkmax=(Fk+Gk+Fqk)/n+(Mk+Fvkh)/L =(449+843.75+60)/4+(2879.32+19.351.35)/4.52=980.30kN Qkmin=(Fk+Gk+Fqk-Flk)/n-(Mk+Fvkh)/L =(449+843.75+60-0)/4-(2879.32+19.351.35)/4.52=-303.93kN四. 承台受弯计算 1. 荷载计算 不计承台自重及其上土重,第i桩的竖向力反力设计值: 工作状态下: 最大压力 Ni=1.35(Fk+
16、Fqk)/n+1.35(Mk+Fvkh)/L =1.35(449+60)/4+1.35(2879.32+19.351.35)/4.52=1038.64kN 最大拔力 Ni=1.35(Fk+Fqk)/n-1.35(Mk+Fvkh)/L =1.35(449+60)/4-1.35(2879.32+19.351.35)/4.52=-695.07kN 非工作状态下: 最大压力 Ni=1.35Fk/n+1.35(Mk+Fvkh)/L =1.35449/4+1.35(2367.74+34.561.35)/4.52=871.89kN 最大拔力 Ni=1.35Fk/n-1.35(Mk+Fvkh)/L =1.35
17、449/4-1.35(2367.74+34.561.35)/4.52=-568.81kN 2. 弯矩的计算依据塔式起重机混凝土基础工程技术规程第6.4.2条 其中 Mx,My1计算截面处XY方向的弯矩设计值(kN.m); xi,yi单桩相对承台中心轴的XY方向距离(m); Ni不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。 由于工作状态下,承台正弯矩最大: Mx=My=21038.640.80=1661.83kN.m 承台最大负弯矩: Mx=My=2-695.070.80=-1112.11kN.m 3. 配筋计算 根据混凝土结构设计规程GB50010-2002第7.2.1条 式中 1
18、系数,当混凝土强度不超过C50时,1取为1.0,当混凝土强度等级为C80时, 1取为0.94,期间按线性内插法确定; fc混凝土抗压强度设计值; h0承台的计算高度; fy钢筋受拉强度设计值,fy=300N/mm2。 底部配筋计算: s=1661.83106/(1.00016.7005000.00013002)=0.0118 =1-(1-20.0118)0.5=0.0118 s=1-0.0118/2=0.9941 As=1661.83106/(0.99411300.0300.0)=4286.5mm2 顶部配筋计算: s=1112.11106/(1.00016.7005000.00013002)
19、=0.0079 =1-(1-20.0079)0.5=0.0079 s=1-0.0079/2=0.9941 As=1112.11106/(0.99601300.0300.0)=2862.9mm2五. 承台剪切计算 最大剪力设计值: Vmax=1038.64kN 依据混凝土结构设计规范(GB50010-2002)的第7.5.7条。 我们考虑承台配置箍筋的情况,斜截面受剪承载力满足下面公式: 式中 计算截面的剪跨比,=1.500 ft混凝土轴心抗拉强度设计值,ft=1.570N/mm2; b承台的计算宽度,b=5000mm; h0承台计算截面处的计算高度,h0=1300mm; fy钢筋受拉强度设计值
20、,fy=300N/mm2; S箍筋的间距,S=549mm。 经过计算承台已满足抗剪要求,只需构造配箍筋!六. 承台受冲切验算 角桩轴线位于塔机塔身柱的冲切破坏锥体以内,且承台高度符合构造要求,故可不进行承台角桩 冲切承载力验算七.桩身承载力验算 桩身承载力计算依据建筑桩基础技术规范(JGJ94-2008)的第5.8.2条 根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=1.35980.30=1323.41kN 桩顶轴向压力设计值应满足下面的公式: 其中 c基桩成桩工艺系数,取0.75 fc混凝土轴心抗压强度设计值,fc=16.7N/mm2; Aps桩身截面面积,Aps=5026
21、55mm2。 桩身受拉计算,依据建筑桩基技术规范JGJ94-2008 第5.8.7条 受拉承载力计算,最大拉力 N=1.35Qkmin=-410.30kN 经过计算得到受拉钢筋截面面积 As=1367.678mm2。 由于桩的最小配筋率为0.20%,计算得最小配筋面积为1005mm2 综上所述,全部纵向钢筋面积1368mm2八.桩竖向承载力验算 依据塔式起重机混凝土基础工程技术规程(JGJ/T 187-2009)的第6.3.3和6.3.4条 轴心竖向力作用下,Qk=338.19kN;偏向竖向力作用下,Qkmax=980.30kN.m 桩基竖向承载力必须满足以下两式: 单桩竖向承载力特征值按下式
22、计算: 其中 Ra单桩竖向承载力特征值; qsik第i层岩石的桩侧阻力特征值;按下表取值; qpa桩端端阻力特征值,按下表取值; u桩身的周长,u=2.51m; Ap桩端面积,取Ap=0.50m2; li第i层土层的厚度,取值如下表; 厚度及侧阻力标准值表如下:序号 土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 土名称 1.78 0 0 人工填土 3.2 35 0 粉质粘土 3.7 110 2500 卵石 0.9 35 0 粉质粘土 11.8 90 2200 圆砾 由于桩的入土深度为10.4m,所以桩端是在第5层土层。 最大压力验算: Ra=2.51(1.780+3.217
23、.5+3.755+.917.5+.81999999999999945)+11000.50=1337.44kN 由于: Ra = 1337.44 Qk = 338.19,所以满足要求! 由于: 1.2Ra = 1604.93 Qkmax = 980.30,所以满足要求!九.桩的抗拔承载力验算 依据塔式起重机混凝土基础工程技术规程(JGJ/T 187-2009)的第6.3.5条 偏向竖向力作用下,Qkmin=-303.93kN.m 桩基竖向承载力抗拔必须满足以下两式: 式中 Gp桩身的重力标准值,水下部分按浮重度计; i抗拔系数; Ra=2.51(0.7001.780+0.7003.235+0.7
24、003.7110+0.700.935+0.700.81999999999999990)=1152.061kN Gp=0.503(10.425-5.4810)=103.145kN 由于: 1152.06+103.14 = 303.93 满足要求!(二)、2#塔吊桩基础计算书一. 参数信息塔吊型号: ZJ5710 塔机自重标准值:Fk1=449.00kN 起重荷载标准值:Fqk=60.00kN 塔吊最大起重力矩:M=954.00kN.m 塔吊计算高度: H=40.5m 塔身宽度: B=1.60m 非工作状态下塔身弯矩:M1=1668kN.m 桩混凝土等级: C35 承台混凝土等级:C35 保护层厚
25、度: 50mm 矩形承台边长: 5.00m 承台厚度: Hc=1.250m 承台箍筋间距: S=549mm 承台钢筋级别: HRB335 承台顶面埋深: D=0.000m 桩直径: d=0.800m 桩间距: a=3.200m 桩钢筋级别: HRB335 桩入土深度: 12.30m 桩型与工艺: 泥浆护壁钻(冲)孔灌注桩 计算简图如下: 二. 荷载计算 1. 自重荷载及起重荷载 1) 塔机自重标准值 Fk1=449kN 2) 基础以及覆土自重标准值 Gk=551.2525=781.25kN 3) 起重荷载标准值 Fqk=60kN 2. 风荷载计算 1) 工作状态下塔机塔身截面对角线方向所受风荷
26、载标准值 a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2) =0.81.481.951.540.2=0.71kN/m2 =1.20.710.351.6=0.48kN/m b. 塔机所受风荷载水平合力标准值 Fvk=qskH=0.4840.50=19.35kN c. 基础顶面风荷载产生的力矩标准值 Msk=0.5FvkH=0.519.3540.50=391.91kN.m 2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值 a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m2) =0.81.511.951.540.35=1.27kN/m2 =1.21.270.35
27、1.60=0.85kN/m b. 塔机所受风荷载水平合力标准值 Fvk=qskH=0.8540.50=34.56kN c. 基础顶面风荷载产生的力矩标准值 Msk=0.5FvkH=0.534.5640.50=699.74kN.m 3. 塔机的倾覆力矩 工作状态下,标准组合的倾覆力矩标准值 Mk=1668+0.9(954+391.91)=2879.32kN.m 非工作状态下,标准组合的倾覆力矩标准值 Mk=1668+699.74=2367.74kN.m三. 桩竖向力计算 非工作状态下: Qk=(Fk+Gk)/n=(449+781.25)/4=307.56kN Qkmax=(Fk+Gk)/n+(M
28、k+Fvkh)/L =(449+781.25)/4+(2367.74+34.561.25)/4.52=840.39kN Qkmin=(Fk+Gk-Flk)/n-(Mk+Fvkh)/L =(449+781.25-0)/4-(2367.74+34.561.25)/4.52=-225.27kN 工作状态下: Qk=(Fk+Gk+Fqk)/n=(449+781.25+60)/4=322.56kN Qkmax=(Fk+Gk+Fqk)/n+(Mk+Fvkh)/L =(449+781.25+60)/4+(2879.32+19.351.25)/4.52=964.25kN Qkmin=(Fk+Gk+Fqk-Fl
29、k)/n-(Mk+Fvkh)/L =(449+781.25+60-0)/4-(2879.32+19.351.25)/4.52=-319.13kN四. 承台受弯计算 1. 荷载计算 不计承台自重及其上土重,第i桩的竖向力反力设计值: 工作状态下: 最大压力 Ni=1.35(Fk+Fqk)/n+1.35(Mk+Fvkh)/L =1.35(449+60)/4+1.35(2879.32+19.351.25)/4.52=1038.07kN 最大拔力 Ni=1.35(Fk+Fqk)/n-1.35(Mk+Fvkh)/L =1.35(449+60)/4-1.35(2879.32+19.351.25)/4.52
30、=-694.49kN 非工作状态下: 最大压力 Ni=1.35Fk/n+1.35(Mk+Fvkh)/L =1.35449/4+1.35(2367.74+34.561.25)/4.52=870.85kN 最大拔力 Ni=1.35Fk/n-1.35(Mk+Fvkh)/L =1.35449/4-1.35(2367.74+34.561.25)/4.52=-567.78kN 2. 弯矩的计算依据塔式起重机混凝土基础工程技术规程第6.4.2条 其中 Mx,My1计算截面处XY方向的弯矩设计值(kN.m); xi,yi单桩相对承台中心轴的XY方向距离(m); Ni不计承台自重及其上土重,第i桩的竖向反力设计
31、值(kN)。 由于工作状态下,承台正弯矩最大: Mx=My=21038.070.80=1660.91kN.m 承台最大负弯矩: Mx=My=2-694.490.80=-1111.19kN.m 3. 配筋计算 根据混凝土结构设计规程GB50010-2002第7.2.1条 式中 1系数,当混凝土强度不超过C50时,1取为1.0,当混凝土强度等级为C80时, 1取为0.94,期间按线性内插法确定; fc混凝土抗压强度设计值; h0承台的计算高度; fy钢筋受拉强度设计值,fy=300N/mm2。 底部配筋计算: s=1660.91106/(1.00016.7005000.00012002)=0.01
32、38 =1-(1-20.0138)0.5=0.0139 s=1-0.0139/2=0.9930 As=1660.91106/(0.99301200.0300.0)=4645.9mm2 顶部配筋计算: s=1111.19106/(1.00016.7005000.00012002)=0.0092 =1-(1-20.0092)0.5=0.0093 s=1-0.0093/2=0.9930 As=1111.19106/(0.99541200.0300.0)=3101.0mm2五. 承台剪切计算 最大剪力设计值: Vmax=1038.07kN 依据混凝土结构设计规范(GB50010-2002)的第7.5.
33、7条。 我们考虑承台配置箍筋的情况,斜截面受剪承载力满足下面公式: 式中 计算截面的剪跨比,=1.500 ft混凝土轴心抗拉强度设计值,ft=1.570N/mm2; b承台的计算宽度,b=5000mm; h0承台计算截面处的计算高度,h0=1200mm; fy钢筋受拉强度设计值,fy=300N/mm2; S箍筋的间距,S=549mm。 经过计算承台已满足抗剪要求,只需构造配箍筋!六. 承台受冲切验算 角桩轴线位于塔机塔身柱的冲切破坏锥体以内,且承台高度符合构造要求,故可不进行承台角桩 冲切承载力验算七.桩身承载力验算 桩身承载力计算依据建筑桩基础技术规范(JGJ94-2008)的第5.8.2条 根据第二步的计算方案可以得到桩的轴向压力设计值
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100