ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:184KB ,
资源ID:2242029      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2242029.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(相似三角形的判定定理及练习.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

相似三角形的判定定理及练习.doc

1、_(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形2、相似三角形对应边的比叫做相似比3、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似强调:定理的基本图形有三种情况,如图其符号语言:DEBC,ABCADE;这个定理是用相似三角形定义推导出来的三角形相似的判定定理它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;有了预备定理后,在解题时不但要想到 “见平行,想比例”,还要想到“见平行,想相似”(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一

2、个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。例1、已知:如图,1=2=3,求证:ABCADEABCDEF例2、如图,E、F分别是ABC的边BC上的点,DEAB,DFAC ,求证:ABCDEF. 判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。简单说成:两边对应成比例且夹角相等,两三角形相似例1、ABC中,点D在AB上,如果AC2=ADAB,那么ACD与ABC相似吗?说说你的理由例2、如图,点C、D在线段AB上,PCD是等边三角形。(1)当AC、CD、DB满足怎样的关系时,ACPPDB?(2)当ACPPDB时,求A

3、PB的度数。判定定理3:如果三角形的三组对应边的比相等,那么这两个三角形相似。简单说成:三边对应成比例,两三角形相似强调:有平行线时,用预备定理;已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;已有两边对应成比例时,可考虑利用判定定理2或判定定理3但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似例1、已知:如图,在正方形ABCD中,P是BC上的点,且BP3PC,Q是CD的中点求证:ADQQCP例2、如图,ABBD,CDBD,P为BD上一动点,AB=60 cm,CD

4、=40 cm,BD=140 cm,当P点在BD上由B点向D点运动时,PB的长满足什么条件,可以使图中的两个三角形相似?请说明理由.例3、已知:AD是RtABC中A的平分线,C=90,EF是AD的垂直平分线交AD于M,EF、BC的延长线交于一点N。求证:(1)AMENMD (2)ND2=NCNB强调:由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛(直角三角形被斜边上的

5、高分成的两个直三角形的与原三角形相似)如图,可简单记为:在RtABC中,CDAB,则ABCCBDACD补充射影定理。三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SASSSSAAS(ASA)HL相似三角形 的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(2)如图:其中1=2,则ADEABC称为“相交线型”的相似三角形。(3)如图:1=2,B=D,则ADEABC,称为“旋转型”的相似三角形。二、例题分析1、下列说法不正确的是( )A、 两对应角相等的三

6、角形是相似三角形; B、两对应边成比例的三角形是相似三角形;ABCDEFC、三边对应成比例的三角形是相似三角形; D、以上有两个说法是正确。2、如图,DEBC,EFAB,则图中相似三角形有( ) A、2对 B、3对 C、4对 D、5对3、如图,若P为ABC的边AB上一点(ABAC),则下列条件不一定能保证ACPABC的有( )ABCP A、ACP=B B、APC=ACB C、 D、4、如图,在ABC中,点D、E分别是AB、AC的中点,则下列结论:BC=2DE;ADEABC;其中正确的有 ( )A、3个 B、2个 C、1个 D、0个 5、 如图ADAB于D,CEAB于E交AB于F,则图中相似三角

7、形的对数是。6、小明的身高是1.6m,他的影长为2m,同一时刻教学楼的影长为24m,则教学楼的高是 ; 7、已知AD为RtABC斜边BC上的高,且AB=15cm,BD=9cm,则AD= ,CD= 。8、如图四,在平行四边形ABCD中,AB = 4cm ,AD = 7cm , ABC的平分线交AD于点E,交CD的延长线于点F,则DF = _cm 9、已知:如图,ABC中,AD=DB,1=2.求证:ABCEAD.10、已知,如图,D为ABC内一点,连结ED、AD,以BC为边在ABC外作CBE=ABD,BCE=BAD求证:DBEABC11、已知ABC中,AB=AC,A=36,BD是角平分线,求证:A

8、BCBCD 12、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角形?请证明你的结论。13、如图10,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N求证:(1);(2)14、已知如图,A=90,D是AB上任意一点,BEBC,BCE=DCA,EFAB,BFEDCA求证:AD=BF15、有一块三角形的土地,它的底边BC100米,高AH80米。某单位要沿着地边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上。若大楼的宽是40米(即DE40米),求这个矩形的面积。16.如图,在平行四边形ABCD中,分别以为边向外作和,使延长交边于点,点在两点之间,连结(1)求证: (2)当时,求的度数 Welcome ToDownload !欢迎您的下载,资料仅供参考!精品资料

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服