ImageVerifierCode 换一换
格式:PPT , 页数:60 ,大小:1.22MB ,
资源ID:2228252      下载积分:16 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2228252.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(奥本海姆信号与系统第二版英文课件第一章.ppt)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

奥本海姆信号与系统第二版英文课件第一章.ppt

1、 1 Signal and System1.1 Continuous-time and discrete-time signals1.1.1 Examples and Mathematical RepresentationA.Examples(1)A simple RC circuitSource voltage Vs and Capacitor voltage Vc1.Signals and Systems 1 Signal and System(2)An automobileForce f from engineRetarding frictional force VVelocity V

2、1 Signal and System(3)A Speech Signal 1 Signal and System(4)A Picture 1 Signal and System(5)Vertical Wind Profile 1 Signal and SystemB.Types of Signals(1)Continuous-time Signal 1 Signal and System(2)Discrete-time Signal 1 Signal and SystemC.Representation(1)Function Representation Example:x(t)=cos0t

3、 x(t)=ej 0t(2)Graphical Representation Example:(See page before)1 Signal and System1.1.2 Signal Energy and PowerA.Energy(Continuous-time)Instantaneous power:Let R=1,so p(t)=i2(t)=v2(t)=x2(t)1 Signal and SystemEnergy over t1 t t2:Total Energy:Average Power:1 Signal and SystemB.Energy(Discrete-time)In

4、stantaneous power:Energy over n1 n n2:Total Energy:Average Power:1 Signal and SystemC.Finite Energy and Finite Power SignalFinite Energy Signal:Finite Power Signal:(P 0)(E )1 Signal and System1.2 Transformations of the Independent Variable1.2.1 Examples of TransformationsA.Time ShiftRight shift :x(t

5、-t0)xn-n0 (Delay)Left shift :x(t+t0)xn+n0 (Advance)1 Signal and SystemExamples 1 Signal and SystemB.Time Reversalx(-t)or x-n:Reflection of x(t)or xn 1 Signal and SystemC.Time Scalingx(at)(a0 )Stretch if a0Example 1.1 1 Signal and System1.2.2 Periodic SignalsDefinition:There is a posotive value of T

6、which:x(t)=x(t+T),for all t x(t)is periodic with period T.T Fundamental Period For Discrete-time period signal:xn=xn+N for all n N Fundamental Period 1 Signal and SystemExamples of periodic signal 1 Signal and System1.2.3 Even and Odd Signals Even signal:x(-t)=x(t)or x-n=xn Odd signal:x(-t)=-x(t)or

7、x-n=-xnEven-Odd Decomposition:or:1 Signal and SystemExamples 1 Signal and System1.3 Exponential and Sinusoidal signal1.3.1 Continuous-time Complex Exponential and Sinusoidal SignalsA.Real Exponential Signals x(t)=C eat (C,a are real value)1 Signal and SystemB.Periodic Complex Exponential and Sinusoi

8、dal Signals (1)x(t)=e j0t (2)x(t)=Acos(0t+)(3)x(t)=e jk0t All x(t)satisfy for x(t)=x(t+T),and T=2/0 So x(t)is periodic.1 Signal and SystemEulers Relation:e j0t =cos0t+sin 0t and cos0t=(e j0t+e-j0t)/2 sin0t =(e j0t -e-j0t)/2 We also have 1 Signal and SystemC.General Complex Exponential Signals x(t)=C

9、 e jat,in which C=|C|ej,a=r+j 0 So x(t)=|C|ej eat ej0t =|C|eat ej(0t+)=|C|eat cos(0t+)+j|C|eat sin(0t+)1 Signal and SystemSignal waves 1 Signal and System1.3.2 Discrete-time Complex Exponential and Sinusoidal SignalsComplex Exponential Signal(sequence):xn=C n or xn=C en 1 Signal and SystemA.Real Exp

10、onential Signal Real Exponential Signal xn=C n (a)1 (b)01 (c)-10 (d)-1 1 Signal and SystemB.Sinusoidal Signals Complex exponential:xn=e j0n =cos 0n+jsin0n Sinusoidal signal:xn=cos(0n+)1 Signal and SystemC.General Complex Exponential Signals Complex Exponential Signal:xn=C n in which C=|C|ej,=|ej0 (p

11、olar form)then xn=|C|ncos(0n+)+j|C|nsin(0n+)1 Signal and SystemReal or Imaginary of Signal 1 Signal and System1.3.3 Periodicity Properties of Discrete-time Complex ExponentialsContinuous-time:e j0t ,T=2/0Discrete-time:e j0n,N=?Calculate period:By definition:e j0n=e j0(n+N)thus e j0N=1 or 0N=2 m So N

12、=2m/0 Condition of periodicity:2/0 is rational 1 Signal and SystemPeriodicity Properties 1 Signal and System1.4 The Unit Impulse and Unit Step Functions1.4.1 The Discrete-time Unit Impulse and Unit Step Sequences(1)Unit Sample(Impulse):1 Signal and SystemUnit Step Function:(2)Relation Between Unit S

13、ample and Unit Stepor 1 Signal and System(3)Sampling Property of Unit Sample 1 Signal and SystemIllustration of Sampling 1 Signal and System1.4.2 The Continuous-time Unit Step and Unit Impulse Functions(1)Unit Step Function:1 Signal and SystemUnit Impulse Function:1 Signal and System(2)Relation Betw

14、een Unit Impulse and Unit Step 1 Signal and System(3)Sampling Property of(t)Example 1.7 1 Signal and System1.5 Continuous-time and Discrete-time SystemDefinition:(1)Interconnection of Component,device,subsystem.(Broadest sense)(2)A process in which signals can be transformed.(Narrow sense)Representa

15、tion of System:(1)Relation by the notation 1 Signal and System(2)Pictorial Representation Continuous-time system x(t)y(t)Discrete-time system xnyn 1 Signal and System1.5.1 Simple Example of systemsExample 1.8:RC Circuit in Figure 1.1:Vc(t)Vs(t)RC Circuit(system)vs(t)vc(t)1 Signal and SystemExample 1

16、.10:Balance in a bank account from month to month:balance -yn net deposit -xn interest -1%so yn=yn-1+1%yn-1+xn or yn-1.01yn-1=xnBalance in bank(system)xnyn 1 Signal and System1.5.2 Interconnections of System(1)Series(cascade)interconnection 1 Signal and System(2)Parallel interconnection Series-Paral

17、lel interconnection 1 Signal and System(3)Feed-back interconnection 1 Signal and SystemExample of Feed-back interconnection 1 Signal and System1.6 Basic System Properties1.6.1 Systems with and without MemoryMemoryless system:Its output is dependent only on the input at the same time.Features:No capa

18、citor,no conductor,no delayer.Examples of memoryless system:y(t)=C x(t)or yn=C xnExamples of memory system:or yn-0.5yn-1=2xn 1 Signal and System1.6.1 Invertibility and Inverse SystemsDefinition:(1)If system is invertibility,then an inverse system exists.(2)An inverse system cascaded with the origina

19、l system,yields an output equal to the input.1 Signal and System 1 Signal and System1.6.3 CausalityDefinition:A system is causal If the output at any time depends only on values of the input at the present time and in the past.For causal system,if x(t)=0 for tt0,there must be y(t)=0 for tt0.(nonanti

20、cipative)Memoryless systems are causal.1 Signal and Systemx(t)y(t)t1t2 1 Signal and System1.6.4 StabilityDefinition:Small inputs lead to responses that don not diverge.Finite input lead to finite output:if|x(t)|M,then|y(t)|N.Examples:Stable pendulum Motion of automobile 1 Signal and SystemExample 1.

21、13 1 Signal and System1.6.5 Time InvarianceDefinition:Characteristics of the system are fixed over time.Time invariant system:If x(t)y(t),then x(t-t0)y(t-t0).Example 1.14 1.15 1.16 1 Signal and Systemx(t)y(t)x(t-t0)y(t-t0)1 Signal and System1.6.6 LinearityDefinition:The system possesses the importan

22、t property of superposition:(1)Additivity property:The response to x1(t)+x2(t)is y1(t)+y2(t).(2)Scaling or homogeneity property:The response to ax1(t)is ay1(t).(where a is any complex constant,a0.)1 Signal and SystemLx1(t)x2(t)y1(t)y2(t)a x1(t)x1(t)+x2(t)ax1(t)+bx2(t)a y1(t)y1(t)+y2(t)ay1(t)+by2(t)Represented in block-diagram:Example 1.17 1.18 1 Signal and SystemLTI SystemLTIx(t)y(t)x(t-t0)ax(t)+bx(t-t0)y(t-t0)ay(t)+by(t-t0)Linear and Time-invariant systemProblems:1.14 1.15 1.16 1.17 1.23 1.24 1.31

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服