1、
基本初等函数及图形
(1) 常值函数(也称常数函数) y =c(其中c 为常数)
(2) 幂函数 ,是常数;
1. 当u为正整数时,函数的定义域为区间,他们的图形都经过原点,并当u>1时在原点处与X轴相切。且u为奇数时,图形关于原点对称;u为偶数时图形关于Y轴对称;
2. 当u为负整数时。函数的定义域为除去x=0的所有实数。
3. 当u为正有理数m/n时,n为偶数时函数的定义域为(0, +),n为奇数时函数的定义域为(-+)。函数的图形均经过原点和(1 ,1).
如果m>n图形于x轴相切,如果m 2、跟原点对称
4. 当u为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数.
(3) 指数函数 (是常数且),;
1. 当a>1时函数为单调增,当a<1时函数为单调减.
2. 不论x为何值,y总是正的,图形在x轴上方.
3. 当x=0时,y=1,所以他的图形通过(0,1)点.
(4) 对数函数 (是常数且),;
1. 他的图形为于y轴的右方.并通过点(1,0)
2. 当a>1时在区间(0,1),y的值为负.图形位于x的下方,在区间(1, +),y值为正,图形位于x 3、轴上方.在定义域是单调增函数.
a<1在实用中很少用到/
(5) 三角函数
正弦函数 ,,,
余弦函数 ,,,
正切函数 ,,,,
余切函数 ,,,;
(6)反三角函数
反正弦函数 , ,,
反余弦函数 ,,,
反正切函数 ,,,
反余切函数 ,,.
小结:
函数名称
函数的记号
函数的图形
函数的性质
指数函数
a):不论x为何值,y总为正数;
b):当x=0时,y=1.
对数函数
a):其图形总位于y轴右侧,并过(1,0)点
b 4、):当a>1时,在区间(0,1)的值为负;在区间(1,+∞)的值为正;在定义域内单调增.
幂函数
(a为任意实数)
这里只画出部分函数图形的一部分。
令a=m/n
a):当m为偶数n为奇数时,y是偶函数;
b):当m,n都是奇数时,y是奇函数;
c):当m奇n偶时,y在(-∞,0)无意义.
三角函数
(正弦函数)
这里只写出了正弦函数
a):正弦函数是以2π为周期的周期函数
b):正弦函数是奇函数且
三角公式汇总
一、任意角的三角函数
在角的终边上任取一点,记:,
正弦: 余弦:
正切: 余切:
正割: 余割:
注:我们 5、还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段、、分别叫做角的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式
倒数关系:,,。
商数关系:,。
平方关系:,,。
三、诱导公式
⑴、、、、的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名不变,符号看象限)
⑵、、、的三角函数值,等于的异名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名改变,符号看象限)
四、和角公式和差角公式
五、二倍角公式
…
二倍角的余弦公式有以下常用变形:(规律:降幂扩角, 6、升幂缩角)
,,。
六、万能公式(可以理解为二倍角公式的另一种形式)
,,。
万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。
七、和差化积公式
…⑴
…⑵
…⑶
…⑷
了解和差化积公式的推导,有助于我们理解并掌握好公式:
两式相加可得公式⑴,两式相减可得公式⑵。
两式相加可得公式⑶,两式相减可得公式⑷。
八、积化和差公式
我们可以把积化和差公式看成是和差化积公式的逆应用。
九、辅助角公式
()
其中:角的终边所在的象限与点所在的象限相同,
,, 7、
十、正弦定理
(为外接圆半径)
十一、余弦定理
十二、三角形的面积公式
(两边一夹角)
(为外接圆半径)
(为内切圆半径)
…海仑公式(其中)
十三诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等
k是整数
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)= 8、cscα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
公式三:
任意角α与 -α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系 9、
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
公式五:
利用公式四和三角函数的奇偶性可以得到α-π与α的三角函数值之间的关系
sin(α-π)=-sinα
cos(α-π)=-cosα
tan(α-π)=tanα
cot(α-π)=cotα
sec(α-π)=-secα
csc(α-π)=-cscα
公式六:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
10、cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
公式七:
π/2±α及3π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=ta 11、nα
sec(π/2-α)=cscα
csc(π/2-α)=secα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sec(3π/2+α)=cscα
csc(3π/2+α)=-secα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sec(3π/2-α)=-cscα
csc(3π/2-α)=-secα
下面的公式再记一次,大家:
四、和角公式和差角公式
五、二倍角公式
…
二倍角的余弦公式有以下常用变形:(规律:降幂扩角,升幂缩角)
,,。
10






