ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:454.50KB ,
资源ID:2200053      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2200053.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学课排列组合和项式定理教案.doc)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学课排列组合和项式定理教案.doc

1、课 题:102排列 (四)教学目的:1切实学会用排列数公式计算和解决简单的实际问题;2会用“捆绑法”和“插入法”解决相邻和不相邻问题的应用题;3进一步培养分析问题、解决问题的能力,同时让学生学会一题多解 教学重点:“捆绑法”和“插入法”应用的条件和方法教学难点:“捆绑法”和“插入法”应用的条件和方法授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程:一、复习引入: 1分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步计数原理:做一件事情,完成它需要

2、分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第n步有种不同的方法,那么完成这件事有 种不同的方法 3排列的概念:从个不同元素中,任取个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列说明:(1)排列的定义包括两个方面:取出元素,按一定的顺序排列; (2)两个排列相同的条件:元素完全相同,元素的排列顺序也相同4排列数的定义:从个不同元素中,任取个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示5排列数公式:说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个少1,最后一个因数是,共有个因数;(2)全排列:当时

3、即个不同元素全部取出的一个排列全排列数:(叫做n的阶乘) 6阶乘的概念:个不同元素全部取出的一个排列,叫做个不同元素的一个全排列,这时;把正整数1到的连乘积,叫做的阶乘表示: , 即规定7排列数的另一个计算公式:= 二、讲解范例:例1 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?解法一:(从特殊位置考虑);解法二:(从特殊元素考虑)若选:;若不选:,则共有种;解法三:(间接法)例2 7位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)

4、一起进行全排列有种方法;再将甲、乙两个同学“松绑”进行排列有种方法所以这样的排法一共有种(2)甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有720种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行排列有种方法所以这样的排法一共有960种方法解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方

5、法,所以,丙不能站在排头和排尾的排法有种方法解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有种方法,再将其余的5个元素进行全排列共有种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有960种方法(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,一共有排法种数:(种)说明:对于相邻问题,常用“捆绑法”(先捆后松)例37位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?解法一:(排除

6、法);解法二:(插空法)先将其余五个同学排好有种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有种方法,所以一共有种方法(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一共有1440种说明:对于不相邻问题,常用“插空法”(特殊元素后考虑)例45男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列解:(1)先将男生排好,有种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,有种排法故本题的排法有(种);

7、(2)方法1:;方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法故本题的结论为(种)三、课堂练习: 1停车场上有一排七个停车位,现有四辆汽车需要停放,若要使三个空位连在一起,则停放方法数为( ) 2五种不同商品在货架上排成一排,其中两种必须连排,而两种不能连排,则不同的排法共有( )12种 20种 24种 48种 36张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分法有( ) 4某人射出8发子弹,命中4发,若命中的4发中仅有3发是连在一起的,那么该人射出的8发,按“命中”与“不命中

8、”报告结果,不同的结果有( )720种 480种 24种 20种 5设且,则在直角坐标系中满足条件的点共有 个67人站一排,甲不站排头,也不站排尾,不同的站法种数有 种;甲不站排头,乙不站排尾,不同站法种数有 种7一部电影在相邻5个城市轮流放映,每个城市都有3个放映点,如果规定必须在一个城市的各个放映点放映完以后才能转入另一个城市,则不同的轮映次序有 种(只列式,不计算)8一天课表中,6节课要安排3门理科,3门文科,要使文、理科间排,不同的排课方法有 种;要使3门理科的数学与物理连排,化学不得与数学、物理连排,不同的排课方法有 种9某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂

9、5台,乙厂3台,丙厂2台,若要求同厂的产品分别集中,且甲厂产品不放两端,则不同的陈列方式有多少种?10用数字0,1,2,3,4,5组成没有重复数字的四位数,其中(1)三个偶数字连在一起的四位数有多少个?(2)十位数字比个位数字大的有多少个?11在上题中,含有2和3并且2和3不相邻的四位数有多少个?答案:1. C 2. C 3. D 4. D 5. 6 6. 3600, 3720 7. 8. 72, 144 9. 10.30; 15011. 66种四、小结 :1对有约束条件的排列问题,应注意如下类型: 某些元素不能在或必须排列在某一位置;某些元素要求连排(即必须相邻);某些元素要求分离(即不能相邻)2基本的解题方法:有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基 五、课后作业: 六、板书设计(略) 七、课后记:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服