1、第九章不等式与不等式组 第一节、知识梳理一、学习目标1.掌握不等式及其解(解集)的概念,理解不等式的意义.2.理解不等式的性质并会用不等式基本性质解简单的不等式.3.会用数轴表示出不等式的解集.二、知识概要1.不等式:一般地,用不等号“”、“”表示不等关系的式子叫做不等式.2.不等式的解:一般地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解.3.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集.4.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式.5.不等式的性质:性质一:不等式的两边都加上(或减去)同一个数
2、或同一个整式,不等号的方向不变.性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变.6.三角形中任意两边之差小于第三边.三、重点难点重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解.四、知识链接本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础.五、中考视点不等式也是经常考到的内容,经常出现在选择题、填空题中,以解不等式为主.有时在一些解答题中也要用到不等式,利用不等关系求范围等.第二节、教材解读1. 常用的不等号有哪些?常用的不等号有五种,其读法和意
3、义是:(1)“”读作“不等于”,它说明两个量是不相等的,但不能明确哪个大哪个小.(2)“”读作“大于”,表示其左边的量比右边的量大.(3)“”读作“小于”,表示其左边的量比右边的量小.(4)“”读作“大于或等于”,即“不小于”,表示左边的量不小于右边的量.(5)“”读作“小于或等于”,即“不大于”,表示左边的量不大于右边的量.2. 如何恰当地列不等式表示不等关系?(1)找准题中不等关系的两个量,并用代数式表示.(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义.(3)选用与题意符合的不等号将表示不等关系的两个量
4、的代数式连接起来.根据下列关系列不等式:a的2倍与b的的和不大于3.前者用代数式表示是2a+b.“不大于”就是“小于或等于”.列不等式为:2a+b3.3. 用数轴表示不等式注意什么?用数轴表示不等式要注意两点:一是边界;二是方向.若边界点在范围内则用实心点表示,若边界点不在范围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画.在同一个数轴上表示下列两个不等式:x-3;x2.第三节、错题剖析一 、去括号时,错用乘法分配律【例1】 解不等式3x+2(2-4x)19.错解: 去括号,得3x+4-4x-15.诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解: 去
5、括号,得3x+4-8x19,-5x-3.二、去括号时,忽视括号前的负号【例2】 解不等式5x-3(2x-1)-6.错解: 去括号,得5x-6x-3-6,解得x-6,所以-x-9,所以x9.三、移项时,不改变符号【例3】 解不等式 4x-52x-9. 错解: 移项,得 4x+2x-9-5, 即6x-14,所以诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x-9+5,解得2x-4,所以x14,解得 诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用. 正解: 去分母,
6、得 6x-(2x-5)14, 去括号,得 6x-2x+514,解得五、不等式两边同除以负数,不改变方向 【例5】解不等式 3x61+7x. 错解: 移项,得 3x7x1+6, 即 4x7,所以 诊断:将不等式4x7的系数化为1时,不等式两边同除以4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x7x1+6,即4x7,所以x【例6】 x2与a的和不是正数用不等式表示.错解及分析: x2+a0. 对“不是正数”理解不清.x2与a的和是0或负数.正解: x2+a0.【例7】 求不等式的非负整数解.错解及分析: 整理得,3x16,所以故
7、其非负整数解是1,2,3,4,5.本例的解题过程没有错误,错在对“非负整数”的理解.正解:整理得,3x16,所以故其非负整数解是0,1,2,3,4,5.【例8】 解不等式3-5(x-2)-4(-1+5x)0.错解及分析:去括号,得3-x-2-4+5x0,即4x3,所以本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x0,即-21x-17,所以【例9】 解不等式7x-64x-9.错解及分析:移项,得7x+4x-9-6,即11x-15,所以一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号.正解:移项,得7
8、x-4x-9+6,即3x-3,所以x-1.【例10】 解不等式错解及分析:去分母,得3+2(2-3x)5(1+x).即11x2,所以错误的原因是在去分母时漏乘了不含分母的一项“3”.正解:去分母,得30+2(2-3x)5(1+x).即11x29,所以【例11】 解不等式6x-61+7x.错解及分析:移项,得6x-7x1+6.即-x7,所以x-7.将不等式-x7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解.正解:移项,得6x-7xx-2.错解: 化简,得(m-1)x2(m-1),所以x2.诊断: 错解默认为m-10,实际上m-1还可能小于或等于0.正解: 化简,得(m
9、-1)x2(m-1), 当m-10时,x2; 当m-10时,x2; 当m-1=0时,无解.【例13】 解不等式(a1)x3.错解: 系数化为1,得x.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.正解: 当a10时,x; 当a1时,0x3,不等式无解; 当a10时,x.【例14】 不等式组的解集为 .错解: 两个不等式相加,得 x-10,所以x1.诊断: 这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解正解:
10、 解不等式组,得.在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:0x【例15】 解不等式组 错解: 因为5x-34x+2,且4x+23x-2,所以 5x-33x-2.移项,得5x-3x-2+3.解得 x.诊断: 上面的解法套用了解方程组的方法,是否正确,我们可以在x的条件下,任取一个x的值,看是否满足不等式组.如取x1,将它代入5x-34x+2,得26(不成立).可知x不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集.正解: 由5x-34x+2,得x5.由4x+23x-2,得x4.综合x5和x4,得原不等式组的解集为x5.【例16】解不
11、等式组错解:由不等式2x37可得x9可得x3.所以原不等式组的解集为2x3.诊断:由不等式性质可得,23,这是不可能的.正解:由不等式2x37可得x9可得x3.所以原不等式组无解.【例17】 解不等式错解:去分母,得34x19x.移项,得4x9x13合并,得13x2系数化为1,得诊断:本题忽视了分数线的双重作用,去分母时,若分子为多项式,应对其加上括号.正解: 去分母,得3(4x1)9x去括号,得34x+19x.移项,得4x9x-13合并,得13x4系数化为1,得【例18】 若不等式组的解集为x2,则a的取值范围是( ).A. a2 D. a2错解及分析:原不等式组可分为得a2.正解:应为a2
12、 ,故选B.【例19】解不等式组错解:,得不等式组的解集为x-13.诊断:错解中把方程组的解法套用到不等式组中.正解:由不等式2x7+x得到x7.由不等式3xx-6得到x-3.所以原不等式组的解集为x0,则ab;如果ab0,则ay,试比较代数式-(8-10x)与(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少? 【思考与分析】根据求差法的步骤我们先求出两个式子的差,然后再根据已知条件xy,来判断这个差的符号,从而比较两个代数式的大小. 解:由两式作差得-(8-10x)(8-10y)-8+10x+8-10y10x-10y. 因为xy,所以10x10y,即10x-1
13、0y0. 所以-(8-10x)(8-10y). 又由题意得-(8-10x)0,即x,所以x最小的正整数值为1. 【例7】有一个三口之家准备在假期出外旅行,咨询时了解到东方旅行社规定:若父母各买一张全票则孩子可以按全票的七折购票;而光明旅行社则规定:三人均可按团体票计价,即按全票的80收费.若两家旅行社的票价相同,则实际哪家收费较低呢? 【思考与分析】要比较哪家旅行社的收费低,我们可以先用含有未知数的式子表示出两家旅行社需要的费用,然后根据求差法的步骤,求出两个式子的差,再根据已知条件判断这个差的符号即可比较出哪个旅行社的费用低. 解:设这两家旅行社全票的价格为a元,依题意 东方旅行社的收费为2
14、a70a2.7a, 光明旅行社的收费为3a802.4a. 因为2.7a2.4a0.3a0, 所以实际上光明旅行社的收费较低. 【反思】在解题时我们为什么设这两家旅行社全票的价格为a元呢?因为如果不设的话,我们即使知道用求差法比较大小,也无从下手.五、巧去括号【例8】【思考与分析】 观察题目中的括号及数字的特点可先考虑去中括号,再去小括号,这样会使运算简便.解:去中括号,得去分母,得 3x+6028+8x,移项,合并同类项,得-5x-32,【思考与分析】 观察题目中的括号及数字的特点可从里向外去小括号,给后面的运算带来方便.解: 去小括号,得六、巧用“整体思想”【例9】 解不等式:【思考与分析】
15、 观察题目中括号内外可知都有相同的项:2x-1,我们把2x1视为整体,再去中括号和分母,则可使运算简捷解: 3(2x-1)-9(2x-1)-95合并同类项得-6(2x-1)14解得反思: 我们在解带有括号的一元一次不等式时,我们要善于观察题目的特点,巧去括号可使运算简便. 【例10】在欧洲足球锦标赛中,共有16支队伍参加比赛,争夺象征欧洲足球最高荣誉的“德劳内杯”.16支队伍被分成4个小组,进行单循环赛(即每个队需同其他三个队各赛一场),胜一场积3分,平一场积1分,负一场积0分,每组按照积分的前两名出线进入前八强,每个队在小组赛中需积多少分,才能确保出线?【思考与分析】根据题意,只有小组赛中的
16、积分的前两名才能出线,我们可以分几种情况来讨论出线积分的多少.(1)若某一队三战全胜积9分,则同组的另一小队需保证小组第二才有出线的希望,在剩下的两场比赛中,它有六种可能:两场全胜积6分,一胜一平积4分,一胜一负积3分,两平积2分,一平一负积1分,两负积0分.(三场比赛,肯定有一场负)因此,在这种情况中,至少积6分才能确保出线;(2)若某一队三战两胜一平积7分,则小组第二至少要两胜积6分才能出线;(3)若某一队三战两胜一负积6分,则其他两个队也可能三战两胜一负积6分,这样三队同积6分,不能确保小组出线.由以上思考讨论可知,在小组赛中,积分可能出现三个队积分相同,为了确保出线,至少需积7分,才能
17、保证以小组第二的身份出线.解:需7分.【小结】通过解题过程我们知道做这类题的时候要注意:在足球比赛中,一般按积分多少排名次;积分相等的两队,净胜球数多的队名次在前;积分、净胜球数都相等的球队,进球数多的队名次在前;分析有关足球比赛的问题时,不能单纯的利用不等关系判断,还要注意到相互之间的胜负关系.第五节、竞赛数学【例1】满足的x的值中,绝对值不超过11的那些整数之和等于 . 【思考与分析】 要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式. 解: 原不等式去分母,得 3(2x)2(2x1), 去括号,移项,合并同类项,得 x8,即x8. 满足x8且绝对值不超
18、过11的整数有0,1,2,3,4,5,6,7,8,9,10,11.这些整数的和为(9)(10)(11)30. 【例2】 如果关于x的一元一次方程3(x4)2a5的解大于关于x的方程的解,那么( ). 【思考与分析】 这道题把方程问题转化为解不等式问题,利用了转化的数学思想.由于第一个方程的解大于第二个方程的解,只要先分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就可以求出问题的答案. 解: 关于x的方程3(x4)2a5的解为 关于x的方程的解为 由题意得,解得.因此选D. 【例3】 如果,2+c2,那么( ). A. a-ca+c B. c-ac
19、+a C. ac-ac D. 3a2a 【思考与分析】 已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便可以找到正确的答案. 解: 由 所以a2,得c0,则有cc. 两边都加上a,得a-ca+c,排除A; 由a0,得ac0,从而ac-ac,排除C; 由a0,两边都加上2a,得3a2a,排除D. 答案应该选B,事实上,由a0,从而aa,两边同时加上c,可得caca. 【例4】 四个连续整数的和为S,S满足不等式,这四个数中最大数与最小数的平方差等于 . 【思考与分析】 由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就可以求出. 解: 设四
20、个连续整数为m-1,m,m+1,m+2,它们的和为S4m2. 由19, 解得7m9. 由于m为整数,所以m8,则四个连续整数为7,8,9,10,因此最大数与最小数的平方的差为1027251.从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离但除零以外,绝对值都是表示两个数的绝对值,即一个数与它相反数的绝对值是一样的由于这个性质,含有绝对值号的不等式的求解过程出现了一些新特点一个实数a的绝对值记作a,指的是由a所惟一确定的非负实数:含绝对值的不等式的性质:(1) abb|a|或b-|a|,abbab; (2) a-ba+ba+b; (3) a-ba-ba+b.由于绝对值的定义,含有绝对值
21、号的代数式无法进行统一的代数运算通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号的不等式的求解,常用分类讨论法在进行分类讨论时,要注意所划分的类别之间应该不重、不漏下面结合例题予以分析【例5】解不等式 x-5-2x+31【分析】 关键是去掉绝对值符号前后的变号.分三个区间讨论:解: (1)当当x时,原不等式化为-(x-5)-(2x+3)1,解得x-7,结合x,故x-7是原不等式的解;(2)当x5时,原不等式化为-(x-5)-(2x+3)1,解得是原不等式的解;(3)当x5时,原不等式化为:x-5-(2x+3)1,解得x-9
22、,结合x5,故x5是原不等式的解综合(1),(2),(3)可知,是原不等式的解第六节、本章训练基础训练题1.不等式x36的非负整数解为( ).A. 1,2 B. 1,2,3C. 1,2,0 D. 1,2,3,02.已知三个连续奇数的和不超过27且大于10,这样的数组共有( ).A. 1个 B. 2个C. 3个 D. 4个3.的值不小于2,则a的取值范围是( ).4.若2x的值不大于8的值,那么x的正整数解是 .5.小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,还可以买多少根火腿肠?6.小华用最小刻度是1厘米的刻度尺,测量一本书的长,测得结果是17.5
23、厘米,这0.5厘米是他估计的,并不准确,若设他所测量的书的长为x厘米,那么x应该满足的不等式是什么?答案1. C 2. B 3. C 4. 1,2,35.解:设还可以买x根火腿肠. 由题意我们可列不等式532x26, 解得 因为x必须为正整数,所以x1,2,3,4,5. 答:小明还可以买火腿肠的数目不超过5根. 6.解:17x18.提高训练题1.解不等式2.李明在第一次数学测验中得76分,在第二次测验中得92分,设第三次测验的分数为x,且三次的平均分不低于85分,求x的取值范围.3.小强去超市买某种牌子的衬衣,该种衬衣单价为每件100元,小强想买的衬衣数不少于5件,路上交通费为10元,小强准备
24、钱时有以下几种选择:准备400元,准备500元,准备510元,准备610元.请你说明哪种方案可行?4.某商城以单价260元购进一批DVD机,出售时标价398元,由于销售不好,商场准备降价出售,但要保证利润不低于10.小明说:“可降价100元.”小英说:“可降价150元.”小华说:“降价不能超过112元.”你同意他们谁的说法?5. 巧解下列不等式: (1) 0.375x-20.5x (2) (4) 6. 解下列不等式: (1) 9-2(x2)6 (2) 12-3x8-2x 7. 已知 答案 2.解:由题意得我们可列不等式 85,解得x87. 3.解:设小明准备了x元钱. 我们由题意可列不等式5.
25、 解得x510. 所以准备510元或准备610元都可以. 4.解:设降价x元. 5. (1) x-16(提示:不等式两边同乘8); 我们可以由题意列不等式398-x26026010.解得x112. 所以小明和小华的说法是正确的.强化训练题1. 若实数a1,则实数Ma,N=的大小关系是( ) A PNMB MNP C NPMD MPN 2. 若0a1,则下列四个不等式中正确的是( ). 3. a、b、c在数轴上的对应点的位置如图所示,下列式子正确的有( ) b+c0; a+ba+c; bcac; abac A1个B2个 C3个 D4个. 4.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题
26、.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?5.已知前年物价涨幅(即前年物价比上一年,也就是大前年物价增加的百分比)为20,去年物价涨幅为15,预计今年物价涨幅降低5个百分点,为了使明年物价比大前年物价涨幅不高出55,明年物价涨幅必须比今年物价涨幅至少再降低x个百分点(x为整数)则x( ).A. 6 B. 7 C. 8 D. 96.某商场计划投入一笔资金,采购紧销商品.经调查发现,如月初出售,可获利15,并可用本和利再投资其他商品,则月末又可获利10;如等到月末出售可获利30,但需要
27、支付仓储费用700元.请问根据商场资金多少,如何购销获利较多?7.小王家里装修,他去商店买灯,商店柜台里现有功率100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解知道这两种灯的照明效果和使用寿命都是一样的.已知小王家所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。答案 1. 【分析与解】 由于、都是含字母的式子,不易比较其大小不妨用特殊值法由a1,取a4,则M=4,N=2,P=3,易知,故选D 注: 用特殊值法解选择题时,一般取能使运算简单的数为特殊值,如本例取a=4 3. 【分析与解】 本题不妨取a2.5,b0.5,c1.5,这样
28、就把利用不等式基本性质解答较难的问题变成了简单的计算题了,易知、正确,故选C.4.【思考与解】 首先要清楚记分原则,抓住关键“最后得分不少于50分”,列出不等式解决问题.方法一: 设小军答对x道题,依题意,得3x(20-x)50,解得 x17.5.因为x为正整数,所以x的最小正整数为18.方法二: 设小军答对x道题,依题意,得3204(20x)50,解得 x17.5.因为x为正整数,所以x的最小正整数为18.方法三: 设小军答错x道题,依题意,得3204x50,解得 x2.5.因为x为正整数,所以x的最大正整数为2,所以小军至少答对18道题.5.C(提示:设大前年物价为1,则前年物价为120,
29、去年物价为1.20(1+15)1.38,预计今年物价为1.381+(155)1.518,明年物价为1.5181+(10-x)1+55,解得x7.9,因为x为整数,最小值为8)6.解:设商场有本金x元,采取月初出售商品的办法到月末可共获利y1元,采取月末出售商品的办法可以获利y2元,则由题意可得y1x1510(x15x)0.265x,y230x7000.3x700,所以y1y2-0.035(x20000).所以当x 20000时,y1y2,选月末出售.当x20000时,y1y2,选月初出售.当x=20000时,y1y2,任选一种办法.7.解:设使用寿命超过x小时时,选择节能灯合算.由题意得解得x
30、1000.所以当这两种灯的使用寿命超过1000小时时,选择节能灯才合算.综合训练题一、填空题(每题5分,共30分)1.若x32a是不等式的一个解,则a的取值范围是 .2.某份竞赛试卷共20道题,每一题答对得10分,答错或不答扣5分,小明得分超过了90分,则小明至少答对了 道题.3.已知点P(a、b)在第二象限,向下平移4个单位后,得到点Q,点Q在第三象限,那么 b的取值范围是 .4.某商品的进价是1000元,售价为1500元,由于销售不好,商店决定降价出售,但又要保证利润不低于5,那么,商店最多降 元出售此商品.5.有10名菜农,每人可以种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.
31、5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则最多只能安排 人种甲种蔬菜.6.有关学生体质健康评价指标规定:握力体重指数m(握力体重)100,初三男生的合格标准是m35.若初三男生小明的体重是50kg,那么小明的握力至少要达到 时才能合格. 二、选择题(每题6分,共30分)7.若点(3a2,2b3)在第二象限,则a、b的取值为( ).8.不等式4x67x-15的正整数解有( ).A. 4个 B. 3个 C. 2个 D. 1个9.不等式的负整数解的积是( ).A. -2 B. 0 C. 2 D. 110.若关于x的方程(x2)3k的根是负数,则k的取值是( ).11.要
32、使,m的取值范围只能是( ). 三、解答题(共40分)12.(共12分)初三(1)班几个同学毕业前合影留念,每人交0.7元,一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,在将收来的钱尽量用掉的前提下,参加照相的同学至少有多少名?13.(14分)北京故宫博物馆内门票是每位60元,20人以上(含20人)的团体票可8折优惠.现在有18名游客买20人的团体票,问比买普通票共便宜多少钱?此外,不足20人时,多少人买20人的团体票才比普通票便宜?14.(14分)从广东某地寄往香港的包裹邮资标准是:1千克(不足1千克按1千克算)77.10元,达到或超过1千克后,每增加1千克(不足1千克按1千克
33、算)加价21.10元.李先生寄出一个包裹的邮资是161.50元,他的包裹的重量在什么范围(单位:千克)?答案 一、 1.(提示:由解的定义,我们把x3-2a代入不等式即可得到a的取值范围.)2.13(提示:由题意,小明的得分是由10答对的题数5答错(或不答)的题数得到的,我们可设小明答对的题数为x,可列不等式10x5(20x)90,解得,题目数只能为整数,所以相当于x13) 3. 0b4. 4. 450 提示:利润率,由题意得5,解得x450.5.4(提示:设安排x人种甲种蔬菜,由题意可得0.53x+0.82(10-x)15.6,解得x4) 6.17.5(提示:将m35及小明体重代入已知等式中
34、即可得) 二、 7.C 8.B 9.C 10.A 11.A 三、12.【解题思路】由题意可知,同学太少了,所交的钱不够用;同学太多了,钱剩下的也就多了,我们由题中的限制条件“每人分一张,将收来的钱尽量用掉”下可以列不等式0.68+0.5x0.7x求解,可得至少参加照相的同学人数.解:设参加照相的至少有x名同学.由题意可列不等式0.68+0.5x0.7x. 解得x3.4.因此参加照相的同学至少有4名同学.13.【解题思路】我们阅读题目后可知18位游客买普通票费用为1080元,买20人的团体票费用为960元,所以这18位游客买团体票比买普通票便宜,那么在少于20人的情况下到底多少人买团体票比买普通
35、票花的钱少呢?由题意我们可列不等式600.82060x求解.解:18位游客买普通票费用为1080元,买20人的团体票费用为960元.1080-960120元,所以便宜120元.设不足20人时,x人买20人的团体票比买普通票便宜.由题意可列不等式600.82060x.解得x16,而x20,所以x17,18,19.14.【解题思路】邮资我们可以从1千克往上1千克1千克的加,可以得到李先生包裹重量的范围,但是这样太麻烦.我们可以由题意列不等式77.1+21.1(x-1)161.50求解,得到李先生包裹重量的范围.解:设李先生的包裹重x千克,显然,x1.由题意我们可列不等式77.1+21.1(x-1)161.50解得x5.又因为x4时,邮资小于等于140.40元,不符合题意,所以4x5.- 24 -
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100