ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:67.54KB ,
资源ID:2177346      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2177346.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021届高考数学二轮复习-专题检测圆锥曲线中的最值、范围、探索性问题.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021届高考数学二轮复习-专题检测圆锥曲线中的最值、范围、探索性问题.doc

1、2021届高考数学二轮复习 专题检测圆锥曲线中的最值、范围、探索性问题2021届高考数学二轮复习 专题检测圆锥曲线中的最值、范围、探索性问题年级:姓名:专题检测(十七) 圆锥曲线中的最值、范围、探索性问题大题专攻强化练1(2019全国卷)已知点A,B关于坐标原点O对称,|AB|4,M过点A,B且与直线x20相切(1)若A在直线xy0上,求M的半径(2)是否存在定点P,使得当A运动时,|MA|MP|为定值?并说明理由解:(1)因为M过点A,B,所以圆心M在AB的垂直平分线上由已知A在直线xy0上,且A,B关于坐标原点O对称,所以M在直线yx上,故可设M(a,a)因为M与直线x20相切,所以M的半

2、径为r|a2|.连接MA,由已知得|AO|2.又,故可得2a24(a2)2, 解得a0或a4.故M的半径r2或r6.(2)存在定点P(1,0),使得|MA|MP|为定值理由如下:设M(x,y),由已知得M的半径为r|x2|,|AO|2.由于MOAO,故可得x2y24(x2)2,化简得M的轨迹方程为y24x.因为曲线C:y24x是以点P(1,0)为焦点,以直线x1为准线的抛物线,所以|MP|x1.因为|MA|MP|r|MP|x2(x1)1,所以存在满足条件的定点P.2(2019武汉部分学校调研)已知椭圆C:1(ab0)的左、右顶点分别为A,B,且长轴长为8,T为椭圆C上异于A,B的点,直线TA,

3、TB的斜率之积为.(1)求椭圆C的方程;(2)设O为坐标原点,过点M(8,0)的动直线与椭圆C交于P,Q两点,求OPQ面积的最大值解:(1)设T(x,y)(x4),则直线TA的斜率为k1,直线TB的斜率为k2.于是由k1k2,得,整理得1(x4),故椭圆C的方程为1.(2)由题意设直线PQ的方程为xmy8,由得(3m24)y248my1440,(48m)24144(3m24)1248(m24)0,即m24,yPyQ,yPyQ.|PQ|,点O到直线PQ的距离d .故SOPQ|PQ|d4,故OPQ面积的最大值为4.3(2019湖南省湘东六校联考)已知椭圆C:1(ab0)的离心率e,点A(b,0),

4、B,F分别为椭圆的上顶点和左焦点,且|BF|BA|2.(1)求椭圆C的方程(2)若过定点M(0,2)的直线l与椭圆C交于G,H两点(G在M,H之间),设直线l的斜率k0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形为菱形?如果存在,求出m的取值范围;如果不存在,请说明理由解:(1)设椭圆的焦距为2c,由离心率e得a2c.由|BF|BA|2,得a2,ab2.a2b2c2,由可得a24,b23,椭圆C的方程为1.(2)设直线l的方程为ykx2(k0),由得(34k2)x216kx40,可知0,k.设G(x1,y1),H(x2,y2),则x1x2,(x1x22m,k(x1x2)

5、4),(x2x1,y2y1)(x2x1,k(x2x1)菱形的对角线互相垂直,()0,(1k2)(x1x2)4k2m0,得m,即m,k,m0.存在满足条件的实数m,m的取值范围为.4(2019郑州市第二次质量预测)椭圆1(ab0)的左、右焦点分别为F1,F2,A为椭圆上一动点(异于左、右顶点),AF1F2的周长为42,且面积的最大值为.(1)求椭圆C的方程;(2)设B是椭圆上一动点,线段AB的中点为P,OA,OB(O为坐标原点)的斜率分别为k1,k2,且k1k2,求|OP|的取值范围解:(1)由椭圆的定义及AF1F2的周长为42,可得2(ac)42,ac2.当A在上(或下)顶点时,AF1F2的面

6、积取得最大值,即bc,由及a2c2b2,得a2,b1,c,椭圆C的方程为y21.(2)当直线AB的斜率不存在时,k1k2,k1k2,k1,不妨取k1,则直线OA的方程为yx,不妨取点A,则B,P(,0),|OP|.当直线AB的斜率存在时,设直线AB的方程为ykxm,A(x1,y1),B(x2,y2),由可得(14k2)x28kmx4m240,64k2m24(4k21)(4m24)16(4k21m2)0,x1x2,x1x2.k1k2,4y1y2x1x20,4(kx1m)(kx2m)x1x2(4k21)x1x24km(x1x2)4m24m244m20,化简得2m214k2(满足式),m2.设P(x0,y0),则x0,y0kx0m.|OP|2xy2,|OP|.综上,|OP|的取值范围为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服