1、河北工程大学毕业设计 目录1 基本资料61.1 任务的提出61.2 工程地质条件61.2.1 地貌与地层61.2.2 水库区工程地质条件71.2.3坝址工程地质条件71.2.4 付坝工程地质条件81.2.5 引水隧洞和厂房区工程地质条件81.3 建筑材料91.4 水文与气象111.4.1 流域自然地理概况111.4.2 气象条件111.4.3 水文资料121.5水利、动能及水库171.5.1 电站任务171.5.2水库水位181.5.3装机容量的选择181.5.4引水隧洞的洞径选择181.5.5附图192 水轮机选型设计252.1 机组台数与单机容量的选择252.1.1 机组台数选择252.1
2、.2机组单机容量选择262.2 水轮机型号及装置方式的选择262.2.1水轮机型号选择262.2.2 装置方式的选择262.3 水轮机参数计算262.3.1 HL240型水轮机方案主要参数选择262.3.2 ZZ440型水轮机方案主要参数选择292.3.3 HL240型水轮机及ZZ44型水轮机两种方案的比较312.4水轮机运转特性曲线的绘制322.4.1等效率曲线的绘制322.4.2出力限制线的绘制332.4.3 等吸出高度曲线的绘制342.5水轮机蜗壳设计352.5.1 蜗壳形式的选择352.5.2 断面形状及包角的选择352.5.3进口断面面积及尺寸的确定352.5.4中间断面尺寸的确定3
3、62.5.5 图的绘制362.6尾水管设计372.6.1尾水管的形式372.6.2 弯肘形尾水管部分尺寸的确定372.7 发电机的选择382.7.1 发电机型式的选择382.7.2水轮发电机的结构尺寸382.8 调速器设计392.8.1 调速设备的选择392.8.2接力器的选择392.8.3 调速器的选择402.8.4 液压装置的选择412.9附图423 坝区枢纽总布置463.1 坝轴线及坝型选择463.1.1 坝轴线选择463.1.2 坝型选择463.2 泄洪方式选择及调洪演算473.3 枢纽布置474 拦河坝设计484.1基本资料484.2 挡水坝剖面设计484.2.1 挡水坝坝顶高程的确
4、定484.2.2 挡水坝的剖面尺寸确定484.3溢流坝剖面设计494.3.1溢流坝面曲线设计494.3.2消能防冲设计504.4 洪水下泄流量校核514.4.1溢流坝过流能力的验算514.4.2 底孔过流能力验算534.5 闸门闸墩及工作桥设545 挡水坝稳定及应力分析565.1 计算说明565.1.1 计算内容565.1.2 计算工况565.1.3 计算单元与计算截面565.2 挡水坝稳定及应力分析565.2.1 荷载计算565.2.2 抗滑稳定分析575.2.3 应力分析586 细部构造设计606.1 坝体分区及标选择606.2 分缝与止水606.3 廊道系统和排水系统的布置616.3.1
5、 廊道系统布置616.3.2 排水设施布置626.4坝顶构造626.4.1非溢流坝坝顶构造626.4.2溢流坝坝顶构造626.5坝基处理626.5.1坝基开挖及清理626.5.2坝基的加固处理626.5.3坝基的防渗处理636.5.4地基排水636.5.5两岸的处理637 水电站引水系统设计647.1隧洞洞径及洞线选择647.1.1有压引水隧洞洞径计算647.1.2洞线选择原则647.2 进水口设计657.2.1进水口型式的选择657.2.2进水口高程确定657.2.3进水口尺寸的拟定667.2.4进口设备677.3 引水隧洞677.3.1 线路与坡度的确定677.3.2 断面形式与断面尺寸6
6、87.3.3 洞身衬砌687.4 调压室设计697.4.1 是否设置调压室判断697.4.2 调压室位置的选择707.4.3 调压室的布置方式与型式的选择707.4.4调压室的水利计算707.5水击及调节保证计算727.5.1调保计算目的727.5.2调节保证计算的内容727.5.3调节保证计算的过程737.6 压力管道设计757.6.1 压力管道的布置757.6.2 压力管道直径的选择767.6.3 调节保证计算767.6.4 压力管道的结构设计及稳定计算767.7 防止地下埋管产生外压失稳的措施788 水电站厂房设计798.1厂区枢纽平面布置798.2主厂房平面设计798.2.1主厂房长度
7、的确定798.2.2 主厂房宽度确定808.3主厂房剖面设计818.3.1 机组的安装高程818.3.2 尾水管底板高程818.3.3 基础开挖高程818.3.4 水轮机地面高程818.3.5 发电机定子安装高程828.3.6 发电机层楼板高程828.3.7 吊车轨顶高程828.3.8 天花板高程828.3.9 屋顶高程838.4副厂房的布置与设计83谢辞84参考资料85外文资料86外文翻译921.基本资料1.1 任务的提出浑江是鸭绿江在我国境内的较大支流,也是我国东北地区水力资源较为丰富的一条河流,因此,合理开发利用浑江水力资源是个重要的课题。浑江发源于长白山老岭,河流全长430余公里,河流
8、坡降约为1/1000;流域面积15000平方公里。流域形状近于椭圆,南北长160公里,东西宽约170公里。根据浑江河道自然特性的变化,大致以通化为上、中游之分界:以桓仁为中、下游之分界。河流系山区河流,蜿蜒于山谷之中,沿河山势陡峭,支流众多,于支流入口处,地势较为开阔,出现山间盆地。浑江流域水系图参见图1。浑江下游(桓仁以下)的水能利用与梯级开发问题曾进行了长时间的研究,基本上归纳为两种开发方案,即:桓仁、沙尖子两级开发方案与桓仁、回龙山、太平哨、高岭、金坑等多级开发方案。目前,在桓仁水电站早已建成投产的情况下,实际上变成为沙尖子高坝大库与回龙、太平哨、高岭、金坑等梯级开发方式之争。本任务书取
9、材于梯级开发方案的太平哨水电站,并拟定为混合式开发的地面厂房型式。有关浑江下游梯级开发情况可参见附图1。1.2 工程地质条件1.2.1 地貌与地层本地区的地貌景观按其成因类型可分为两类:构造剥蚀地形,海拔高程360770米,相对高度200600米,为中低山地形,由古老的变质岩系组成,山脊较狭窄,起伏不大,无明显的峰峦,地形坡度较大。侵蚀堆积地形,本区可见相对高度为2030米的二级阶地,312米的一级阶地和24米的河漫滩。水库区及水工建筑物区出露的地层有: 前震旦系,震旦系、寒武系、朱罗系、和第四系,简单分述如下:前震旦系:主要为一套区域变质岩石,部分经受不同程度的混合岩化作用,形成各种类型的混
10、合质变质岩。各水工建筑物均位于本地层的混合变质岩上。震旦系:仅在水库区东南局部出露,主要为石英砂岩、石英砾岩、粉砂岩、页岩等。寒武系:该系出露更少,仅局部可见,主要为灰岩。朱罗系:该系在水库区北部,雅河口以上至回龙山一带广泛分布,为陆相火山岩建造,主要为安山岩、安山质凝灰岩、流纹岩等。第四系:在本区出露的有上更新统和全新统。前者分布于浑江二级阶地,为洪冲积层,主要为砂卵砾石、砂和亚粘土,后者包括一级阶地、河漫滩及河床上堆积的亚砂土、砂砾石,残积的亚粘土等。1.2.2 水库区工程地质条件本库区两岸山体高峻,高程为360700米,分水岭厚度均在0.8公里以上。库岸岩石在雅河口以上为侏罗纪火山碎屑岩
11、类,以下为震旦纪变质岩和混合质变质岩,地下水位较高,不会向邻谷产永久性渗漏。不存在塌岸问题。1.2.3坝址工程地质条件曾选两条坝线(上坝线与下坝线)进行比较。上、下坝线相距200300米,地质条件基本相同,但下坝线右岸地形更单薄,左岸岩石完整性较差,呈片状破碎,风化也较深,而上坝线左岸则比较完整。河谷部分,下坝线岩石普遍风化较深,而上坝线只有个别地段风化较深。从上述分析确定选用上坝线。修建土坝或混凝土重力坝,地质上都是可能的。坝址区出露的地层有前震旦系和第四系。前震旦系为经受中等程度混合岩化作用的变质岩系,包括黑云母斜长石注入片麻岩、黑云母混合片麻岩和大理岩,前者分布在左岸,后者分布在右岸,两
12、者为整合接触。第四系包括各种不同成因的松散堆积物。堆积层分布于两岸山坡,为亚砂土夹碎石,厚度左岸为1.54.0米,右岸为0.32米。河床砂卵砾石厚03.5米。坝址区两岸发现有断层三条,其中一条为平推断层(F3)位于左岸,走向NE36,倾向南东,倾角70,破碎带宽5米。另外两条北东向断层F1与F2据分析F1就是区域性的太平哨大断裂,在右坝头西北约300米处通过; F2 位于右岸,产状为走向北东4050,倾角80,断层带宽34米。F1与F2对建筑物均无直接影响。坝址区基岩的透水性,根据19个孔、75次压水试验成果统计,单位吸水量由上而下逐渐减小。距地面深4.315米范围内单位吸水量的平均值为0.1
13、升/分,25米以下时为0.027升/分。据分析,若采用混凝土重力坝坝型时(估计坝高40米左右),大坝将建基于比较完整的半风化岩石之上。河谷部分的开挖深度(自基岩面算起)约为27米,相应于此开挖标准,坝基岩石与混凝土摩擦系数建议为0.6,河床部位岩石风化较浅,实际上可挖至微风化岩石,建议摩擦系数采用为0.65。坝址右岸岩石强烈风化,全风化岩石深达30米。强烈风化的原因主要是黑云母混合片麻岩中斜长石和黑色矿物含量较多,长石结晶体粗大,抗风化能力较薄弱所致。建议处理意见是:砂砾状全风化层(深15米左右)可采用混凝土防渗墙方法处理,块状全风化层以下采用帷幕灌浆方法处理。左岸F3断层以及局部破碎带可按常
14、规办法处理。1.2.4 付坝工程地质条件葫芦细子地段山体低缓,最低点地面高程仅为192米,需要修建付坝。若主坝采用土坝型式,则此处可修建岸坡式溢洪道。此处山体最狭窄处宽仅70米,上、下游水为差7米。此坡地形陡峭,基岩裸露,南坡较缓,坡度一般约2030。此垩口是浑江侵蚀堆积二级阶地,垩口顶部和山坡上分布有砂卵砾石,厚度15米,其地质时代为上更新世坡积层。本地段地层主要是前震旦纪黑云母斜长石注入片麻岩,混合岩化程度较低,岩性不均一,有的地方可见变质岩基体。本地段发现断层共七条,但规模均很小,宽度大都在一米以内,最大宽对为1.5米。这些断层大多延伸不长,对建筑物无影响,设计与施工时按常规方法处理即可
15、。通过地质分析与稳定计算可以认为 ,此地段山体是稳定的。为了确保建筑物安全,建议在设计时要加强帷幕灌浆与排水措施。1.2.5 引水隧洞和厂房区工程地质条件浑江在中下游地段,侧向侵蚀作用十分强烈,形成迂回曲折的蛇曲地貌,为修建引水式电站提供了有利的地形条件。太平哨水电站的引水隧洞和厂房位于南天门岭,此处分水岭宽约800米,而两端河水位差达13米。本区地层主要为前震旦系的黑云母混合片麻岩,所有建筑物均将在此岩层上。第四纪包括出口和进口河漫滩的冲积洪积层,岩性为亚砂土,细沙和砂卵砾石,两侧山坡的坡积残积层,岩性为亚砂土,细砂和砂卵砾石;两侧山坡的坡积残积层,岩性为亚砂土夹碎块石。隧洞均将在黑云母混合
16、片麻岩中通过,沿洞线未发现断层,且洞顶上部覆盖新鲜岩体很厚,达80160米,深部裂隙已趋闭合,因此工程地质条件较好,建议采用:f=67,k0=500。洞线前部通过两条较大岩脉,均大致与洞线相交,一条为石英斑岩,宽3040米,另一条为正常闪长岩。宽2630米。据地表槽探观察,岩脉与围岩接触良好,但从钻孔资料分析,石英斑岩裂隙比较发育,故建议,通过岩脉处的参数选用为:f=4,K0=300。厂房后山坡地形坡度约5060,坡高40米左右,通过剖面裂隙绘得知,厂房后坡存在两组顺坡裂隙,第一组倾角为6874,第二组倾角稍缓,为4045。表部裂隙张开13厘米,坡脚部位岩块已经位移。根据上述情况。可认为后山边
17、坡基本上是稳定的,建议在开挖时基本上沿着上述两组裂隙挖成阶梯状边坡,对已经位移或张开宽度较大的岩块予以清除,对局部不稳定岩块可采取相应的加固措施。厂房基础将坐落在新鲜的黑云母混合片麻岩上。1.3 建筑材料天然建筑材料的调查,包括混凝土重力坝和粘土心墙砂砾壳坝两种坝型所需要的各种材料,其需要量初步按:混凝土坝方案,混凝土方量50万米3,砂砾石料150万米3,土坝方案:粘土料14万米3,坝壳砂砾料120万米3,护坡块石料5万米3,反滤料4.5万米3。通过勘探、试验工作,可以满足上述要求,砂砾料与粘土料场分布、储量、质量评价等详见表1与表2。土坝护坡用石料场,选择了葫芦头和榆树底两处。葫芦头石料场位
18、于坝址上游左岸约3公里,交通方便,基岩为黑云母混合片麻岩,榆树底位于坝上游右岸约3公里,料场山体比高100500米,山势陡峻,覆盖厚约1米,基岩仍为黑云母混合片麻岩。砂砾料场位置、储量及质量情况一览表 表1料场名称位置面积(米2)体积(万米2)勘探等级质量评价开采意见无效层有效层水上水下合计葫芦头(漫滩)坝线上游右岸1公里277,8006.345.581.1126.6B各项指标均满足混凝土骨料要求运距短交通方便夹心子坝线下游0.52.5公里216,300296060120B本料场为土坝方案服务上长岭坝线下游右岸6公里414,00001020102B各项指标能满足混凝土骨料要求运输困难下长岭厂区
19、上游左岸2.5公里175,000047047B同上南天门隧洞进口36,800212012B各项指标能满足混凝土骨料要求粘土杂质含量较高下甸子厂区上游右岸1公里90,000024024B同上粘土料场储量、质量情况一览表 表2料场名称地貌单元位置体积(万米3)天然含水量(%)天然容重渗透系数固结快剪有效层无效层湿干凝聚力内摩擦角葫芦头一级阶地坝线上游右岸0.51.5公里46.48.228.3231.81.891.411.541.10-63.10-60.210.1722.226老营沟一级阶地坝线上游左岸5公里184.924.91.751.401.10-60.26251.4 水文与气象1.4.1 流域
20、自然地理概况太平哨电站位于鸭绿江支流浑江下游,本站以上集水面积12950平方公里,其上游约86公里和37公里处分别有桓仁,回龙山水电站,其集水面积坝址以上分别为10,375平方公里与12,506平方公里。浑江流域地理坐标在东经1242412636,北纬40404210之间。其相邻流域北为第二松花江,东为鸭绿江干流,西侧为辽河流域左岸支流浑河、太子河,南为鸭绿江右岸支流蒲石河、 河。浑江属于山区性河流,流域内高山群立,山势陡峭,地势起伏较大,山坡上一半多生杂草和林从,植被较好。1.4.2 气象条件浑江属于山区河流,地形对气候的作用比较明显,流域东北系长白山系的主峰白头山,海拔高达2744米,自此
21、分向西北,西南与东南三方向逐渐低下,到流域南部的丹东,海拔高程为59米,自丹东向北至宽甸,地形突然上升(海拔高程约300米),高差达240米,因此当偏南气流入境后,受地形抬升影响,产生强烈降水,降雨中心多在鸭绿江下游至宽甸间,浑江正处于该暴雨中心北部边缘,故降雨量很大,降雨量集中在夏季,各地68月降雨量占全年的60%左右,尤以7、8两月为最多,最多月雨量与最小月雨量之比达30倍之多。浑江流域正处于西风带大陆的东部,冬季在蒙古高压的控制下,天气寒冷干燥,为期漫长,全流域一月份平均温度均在-10以下,极端最低气温发生在一月份,并在-30以下。全年右45个月气温在零度以下,夏季炎热而短促,极端最高气
22、温可达39.5C(桓仁),年差很大,参见表3。1.4.3 水文资料浑江桓仁以下,干流有桓仁、回龙山、沙尖子水文站,支流有二户来、普乐堡及太平哨水文站。各站资料以桓仁较长。太平哨水库年径流系用回龙山、沙尖子及支流半拉江上的太平哨水文站径流资料,按面积比推求而得,详见表4。各站年径流有关参数详见表5。浑江的洪水主要由急剧而强烈的暴雨形成,暴雨多集中在三天, 其中强度最大的暴雨又多集中在一天之内。就较大洪水年份分析,形成暴雨的天气系统有台风,气旋(华北气旋,渤海气旋、江淮气旋、黄海气旋)以及副热带高压边缘的幅合扰动,如1960年发生了浑江的50年一遇洪水,形成此次暴雨的天气系统在黄海上空正在恢复中的
23、台风输送水汽与副热带高压边缘的扰动,再加上南部连续移来三个低压想遭遇。从第 19 页 共 95 页一月 二月 三月 四月 五月 六月 七月八月九月十月十一十二年 降水量(毫米)沙尖子多年平均10.311.827.247.373.696.9286.1261.31.0551.637.2171020.2太平哨多年平均14.810.923.350.357.788.7326.7313102.151.339.418.61089.6宽甸多年平均13.913.627.448.975.9102.8394.8316.4120.362.742.619.71218.5 蒸发量( 毫米 20厘米蒸发皿)沙尖子多年平均1
24、3.724.955.1113.9155.9135.8116.3100.88862.331.517.4916.3太平哨多年平均13.625.960.4138.4214.7174.2136.8116.396.471.333.314.61095.9宽甸多年平均20.430.660.4106.3156.8140.3118.7122.399.177.337.422.3998.3沙尖子平均-15.1-11-2.88.114.119.122.422.316.37.6-1.4-15.45.4太平哨最高4916.2263134.237.535.228.224.516.3337.5宽甸最低-31-28.4-25.
25、5-8.7-0.2814.511.87-6.5-17.6-32.1-32.1 极端最大风速(米/秒)沙尖子风速8.66.78.312.5169.3167.915115.815.516太平哨风向NWNWSWNWSENSNNNWNWNSES宽甸发生年月1955545555585558555454551956本区气象要素表 表3一月二月三月四月五月六月七月八月九月十月十一十二年均193627.811.192.227331638460150753715016145.425919372017.720.93204555.612294812054.524413.214619389.78.446.673.69
26、4.221962438553224014240.5201193922.44440.117422651429969.59301.849.722208194014.29.740.481.273.3356340105018658.775.932.9193194115.97.815123732047897.634012616197.436.2173194218.81377.916014536.7112070117290.510234.4222194314.41196.83793101012095393899653.629.3185194420.416.966.315312030440930525861
27、.942.319.614819459.27324.593.635435014518958.734420.213.2109194614.414335.724112763.376438155.944.723.818.4148194721.815.623.427515112563381434154.473523.3209194817.817.158.624713614020722799.066.13219.2105194912.226.235.425835495.260847412580.452.930.3179195016.910.136.582.780.835785210678.67356.81
28、1.614719512.82.228.38973.4231158172021832716769.2258195222.616.756.625013610714925613210210720.811319537.16.841.61092425219639221094319.411250195412.510.6138164134164312191069514397.967.2318195521.317.477.81441881546188660.150.568.830.2126195610.47.446.313428538041923839070.88327177195717.113.122.33
29、86127162360105030611470.347.7216195821.416.210713211273.659245271.965.941.319.598.3195911.114.535.113615315372028034822712363.98919602519.093.7117169599298166030391.562.227290196115.615.079.314396.346.851054253514196.295.1194196220.615.641.326320251.222963728414494.147.4170196321.615.538.310275.946.
30、7116028610712485.5342177196422.313.847.2700152136635150026166.446.321.1301196518.218.553.32123538051329285.248.440.617.9107太平哨电站年径流系列表(流量:秒立米) 表4浑江下游主要站年径流参数表(流量:秒立米) 表5站名多年平均流量CVCS/CV设计值P%510509095桓仁1440.3222272051398978回龙山1780.32228025417211096.6太平哨1870.322295266181116101沙尖子2440.322353319216138121
31、东北历年大暴雨的分布规律看,在鸭绿江的中下游(包括浑江一带)暴雨出现的机会和强度都才超过其他流域,多年平均三日暴雨在120毫米以上。浑江历史洪水的调查曾先后进行了5次,调查河段上至通化,下至沙尖子。这对洪水分析提供了可靠的历史资料。桓仁站实测洪水资料较长,加之历史洪水调查资料,故洪水分析成果较为可靠。回龙山与沙尖子的洪峰洪量系分析和桓仁相关插补而延长。太平哨水电站由于无实测资料,故洪峰洪量参数用回龙山参数,洪峰用2/3次方,洪量用一次方,按面积比推求。由于上游桓仁电站库容较大,对洪水起一定的调蓄控制作用,故区间洪水对下游梯级起主要作用。太平哨水电站设计洪水地区组成曾用典型年法和频率组合法(以回龙山为控制)推求组合洪水进行比较,两种方法计算成果相近,故采用典型年法成果,即桓仁,桓回,回太区间设计洪水过程线,系以回龙山三日洪量为控制,按典型年分配,同倍比放大各控制点设计洪水过程线。太平哨水库入库洪水系将桓仁入库洪水,经桓
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100