ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:679.59KB ,
资源ID:2173768      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2173768.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021届高考数学-小题必练6-立体几何与空间向量.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021届高考数学-小题必练6-立体几何与空间向量.docx

1、2021届高考数学 小题必练6 立体几何与空间向量2021届高考数学 小题必练6 立体几何与空间向量年级:姓名:17立体几何研究现实世界中物体的形状、大小与位置关系本单元的学习,可以帮助学生以长方体为载体,认识和理解空间点、直线、平面的位置关系;用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证;了解一些简单几何体的表面积与体积的计算方法;运用直观感知、操作确认、推理论证、度量计算等认识和探索空间图形的性质,建立空间观念学生在学习平面向量的基础上,利用类比的方法理解空间向量的概念、运算、基本定理和应用,体会平面向量和空间向量的共性和差异,运用向量的方法研究空间基本图形的位置关系和度

2、量关系,体会向量方法和综合几何方法的共性和差异,运用向量方法解决筒单的数学问题和实际问题,感悟向量是研究几何问题的有效工具内容包括:基本立体图形、基本图形位置关系、空间直角坐标系、空间向量及其运算、向量基本定理及坐标表示、空间向量的应用1基本立体图形利用实物、计算机软件等观察空间图形,认识柱、锥、台、球及简单组合体的结构特征,能运用这些特征描述现实生活中简单物体的结构知道球、棱柱、棱锥、棱台的表面积和体积的计算公式,能用公式解决简单的实际问题能用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱及其简单组合)的直观图2基本图形位置关系借助长方体,在直观认识空间点、直线、平面的位置关系的基础

3、上,抽象出空间点、直线、平面的位置关系的定义,了解以下基本事实(基本事实14也称公理)和定理基本事实1:过不在一条直线上的三个点,有且只有一个平面基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线基本事实4:平行于同一条直线的两条直线平行定理:如果空间中两个角的两条边分别对应平行,那么这两个角相等或互补从上述定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的平行和垂直的关系,归纳出以下判定定理,并加以证明一条直线与一个平面平行,如果过该直线的平面与此

4、平面相交,那么该直线与交线平行两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行垂直于同一个平面的两条直线平行两个平面垂直,如果一个平面内有一条直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直从上述定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的平行和垂直的关系,归纳出以下性质定理,并加以证明如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直如果一个平面过另一个平面的垂线,那么这两个平面

5、垂直3空间直角坐标系在平面直角坐标系的基础上,了解空间直角坐标系,感受建立空间直角坐标系的必要性,会用空间直角坐标系刻画点的位置借助特殊长方体(所有棱分别与坐标轴平行)顶点的坐标探索并得出空间两点间的距离公式4空间向量及其运算经历由平面向量推广到空间向量的过程,了解空间向量的概念经历由平面向量的运算及其法则推广到空间向量的过程5向量基本定理及坐标表示了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标表示掌握空间向量的线性运算及其坐标表示掌握空间向量的数量积及其坐标表示了解空间向量投影的概念以及投影向量的意义(参见案例9)6空间向量的应用能用向量语言指述直线和平面,理解直线的方向向量与

6、平面的法向量能用向量语言表述直线与直线、直线与平面、平面与平面的夹角以及垂直与平行关系能用向量方法证明必修内容中有关直线、平面位置关系的判定定理能用向量方法解决点到直线、点到平面、相互平行的直线、相互平行的平面的距离问题和简单夹角问题,并能描述解决这一类问题的程序,体会向量方法在研究几何问题中的作用1【2020全国高考真题(理)】已知是面积为的等边三角形,且其顶点都在球O的球面上若球O的表面积为,则O到平面的距离为()ABC1D【答案】C【解析】设球的半径为,则,解得设外接圆半径为,边长为,是面积为的等边三角形,解得,球心到平面的距离,故选C【点睛】本题考查球的相关问题的求解,涉及到球的表面积

7、公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面2【2020全国卷】下图为某几何体的三视图,则该几何体的表面积是()ABCD【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,根据立体图形可得,根据勾股定理可得,是边长为的等边三角形,根据三角形面积公式可得,该几何体的表面积是,故选C【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题一、单选题1设,是两平面,是两直线下列说法正确的是()若,则若,则若,则若,则ABCD【答案】D【解析】由平

8、行公理知对;垂直于同一平面的两条直线平行,故对;垂直于同一直线的两个平面平行,故对;由面面垂直性质定理知对,故选D2某四面体的三视图如图所示,该四面体四个面的面积中,最大的是()A4B8CD【答案】C【解析】根据几何体的三视图还原得到该几何体的直观图为:该几何体为三棱锥体如图所示:由于,下底面为等腰直角三角形可得,所以该四面体四个面的面积中,最大的是,故选C3已知球面上,三点,如果,且球的体积为,则球心到平面的距离为()ABCD【答案】D【解析】设球的半径,则,所以,设外接圆的半径,则由,所以,而,即,所以,故选D4如图,正方体的棱长为,以下结论错误的是()A面对角线中与直线所成的角为的有8条

9、B直线与垂直C直线与平行D三棱锥的体积为【答案】C【解析】如图所示,建立空间直角坐标系对于A,由于两异面直线的夹角范围是,异面直线与所成的角为,同理:正方体的六个面中除了平面与的面对角线外,其他的面对角线都与所成的角为,则共有8条,故A正确;对于B,直线与垂直,故B正确;对于C,直线与垂直,不平行,故C错误;对于D,三棱锥的体积为,故D正确,综上可知,只有C不正确,故选C5直三棱柱中,则异面直线和所成角的余弦值为()ABCD【答案】C【解析】因为,所以三角形是等边三角形,取的中点,以点为原点,建立空间直角坐标系如图:设,则,所以,所以异面直线和所成角的余弦值为,故选C6三棱锥的三条侧棱互相垂直

10、,且,则其外接球上的点到平面的距离的最大值为()ABCD【答案】B【解析】空间四个点在同一球面上,两两垂直,且,则可看作是正方体的一个顶点发出的三条棱,所以过空间四个点的球面即为的正方体的外接球,球的直径即是正方体的对角线,长为,球心O到平面的距离为体对角线的,即球心O到平面的距离为其外接球上的点到平面的距离的最大值为,故选B7用斜二测画法画水平放置的的直观图,得到如图所示的等腰直角三角形已知点是斜边的中点,且,则的边边上的高为()A1B2CD【答案】D【解析】直观图是等腰直角三角形,根据直观图中平行于轴的长度变为原来的一半,的边上的高,故选D8如图,在直三棱柱中,底面为直角三角形,点是线段上

11、一动点,则的最小值是()ABCD【答案】B【解析】连,沿将展开与在同一个平面内,连接,长度即是所求直三棱柱中,底面为直角三角形,矩形是边长为的正方形;则,另外;在矩形中,则;易发现,即,则,故,故答案为B二、多选题9如图,正方体的棱长为1,E,F,G分别为,的中点,则()A直线与直线垂直B直线与平面平行C点C与点G到平面的距离相等D平面截正方体所得的截面面积为【答案】BD【解析】对于A,取中点M,则为在平面上的射影,与不垂直,与不垂直,故A错;对于B,取中点N,连接,在正方体中,平面,平面,所以平面,同理可证平面,所以平面平面,平面,所以平面,故B正确;对于C,假设C与G到平面的距离相等,即平

12、面将平分,则平面必过的中点,连接交于H,而H不是中点,则假设不成立,故C错;对于D,在正方体中,把截面补形为四边形,由等腰梯形计算其面积,故D正确,故选BD10已知是两个不重合的平面,是两条不重合的直线,则下列命题正确的是()A若,则B若,则C若,则D若,则与所成的角和与所成的角相等【答案】BCD【解析】选项A:若,则或,又,并不能得到这一结论,故选项A错误;选项B:若,则由线面垂直的性质定理和线面平行的性质定理可得,故选项B正确;选项C:若,则有面面平行的性质定理可知,故选项C正确;选项D:若,则由线面角的定义和等角定理知,与所成的角和与所成的角相等,故选项D正确,故选BCD11如图所示,在

13、长方体,若,、分别是、的中点,则下列结论中成立的是()A与垂直B平面C与所成的角为D平面【答案】ABD【解析】连接、,则为的中点,对于A选项,平面,平面,、分别为、的中点,则,A选项正确;对于B选项,四边形为正方形,则,又,平面,平面,B选项正确;对于C选项,易知为等边三角形,则,则与所成的角为,C选项错误;对于D选项,平面,平面,平面,D选项正确,故选ABD12如图,在三棱柱中,底面是等边三角形,侧棱底面,为的中点,若,则()AB异面直线与所成角的余弦值为C异面直线与所成角的余弦值为D平面【答案】AC【解析】A:因为侧棱底面,所以,因为是等边三角形,所以,因为,所以平面,则,A正确;以为原点

14、,如图建立空间直角坐标系,则,所以,所以,所以异面直线与所成角的余弦值为,B不正确,C正确;又因为,设平面法向量为,则,即,取,则,因为,且,所以若平面不成立,D不正确,故选AC三、填空题13在三棱锥中,底面,若E,F是的三等分点,则异面直线与所成角的余弦值_【答案】【解析】如图所示:以为轴,为轴,平面内垂直于的直线为轴建立空间直角坐标系,则,则,则,则,故异面直线与所成角的余弦值为,故答案为14如图所示,已知平行六面体中,为的中点,则长度为_【答案】【解析】因为,所以,所以,故答案为15在直三棱柱中,则异面直线与所成角的余弦值为_【答案】【解析】因为,所以角为直角,又直棱柱中,侧棱与底面垂直

15、,所以两两垂直,以点为坐标原点,以方向分别为轴,轴,轴,建立如图所示的空间直角坐标系则,所以,设异面直线与所成角为,则,故答案为16如图所示,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中,为的中点(1)则直线与平面所成角的余弦值为_;(2)则点到平面的距离为_【答案】,【解析】(1)在PAD中,O为AD中点,所以,又侧面PAD底面ABCD,平面平面,平面PAD,所以PO平面ABCD又在直角梯形ABCD中,易得;所以以O为原点,OC为x轴,OD为y轴,OP为z轴建立空间直角坐标系则,所以,得OA平面POC,所以是平面POC的一个法向量,所以PB与平面POC所成角的余弦值为(2),设平面PDC的法向量为,则,取z1,得,B点到平面PCD的距离

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服