ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:148.53KB ,
资源ID:2172418      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2172418.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学二次根式提高练习及解析.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学二次根式提高练习及解析.doc

1、 八年级数学二次根式提高练习及解析(一)判断题:(每小题1分,共5分)12() 22的倒数是2()3() 4、是同类二次根式()5,都不是最简二次根式()(二)填空题:(每小题2分,共20分)6当x_时,式子有意义 7化简 _8a的有理化因式是_ 9当1x4时,|x4|_10方程(x1)x1的解是_ 11已知a、b、c为正数,d为负数,化简_ 12比较大小:_ 13化简:(75)2000(75)2001_14若0,则(x1)2(y3)2_ 15x,y分别为8的整数部分和小数部分,则2xyy2_(三)选择题:(每小题3分,共15分)16已知x()(A)x0(B)x3(C)x3(D)3x017若x

2、y0,则()(A)2x(B)2y(C)2x(D)2y18若0x1,则等于()(A)(B)(C)2x(D)2x19化简a0()(A)(B)(C)(D)20当a0,b0时,a2b可变形为()(A)(B)(C)(D)(四)在实数范围内因式分解:(每小题3分,共6分)219x25y2; 224x44x21(五)计算题:(每小题6分,共24分)23()(); 24;25(a2)a2b2;26()()(ab)(六)求值:(每小题7分,共14分)27已知x,y,求的值七、选作题:(每小题8分,共16分)28当x1时,求的值29计算(21)()30若x,y为实数,且y求的值二次根式提高测试 答案(一)判断题:

3、(每小题1分,共5分)12()【提示】|2|2 【答案】22的倒数是2()【提示】(2) 【答案】3()【提示】|x1|,x1(x1)两式相等,必须x1但等式左边x可取任何数 【答案】4、是同类二次根式()【提示】、化成最简二次根式后再判断 【答案】5,都不是最简二次根式() 【答案】是最简二次根式 (二)填空题:(每小题2分,共20分)6当x_时,式子有意义【提示】何时有意义?x0分式何时有意义?分母不等于零 【答案】x0且x97化简_ 【答案】2a【点评】注意除法法则和积的算术平方根性质的运用8a的有理化因式是_【提示】(a)(_)a2a 【答案】a9当1x4时,|x4|_【提示】x22x

4、1()2,x1当1x4时,x4,x1是正数还是负数?x4是负数,x1是正数 【答案】310方程(x1)x1的解是_【提示】把方程整理成axb的形式后,a、b分别是多少?, 【答案】x3211已知a、b、c为正数,d为负数,化简_【提示】|cd|cd【答案】cd【点评】ab(ab0),abc2d2()()12比较大小:_【提示】2,4【答案】【点评】先比较,的大小,再比较,的大小,最后比较与的大小13化简:(75)2000(75)2001_【提示】(75)2001(75)2000(_)75(75)(75)?1 【答案】75【点评】注意在化简过程中运用幂的运算法则和平方差公式14若0,则(x1)2

5、(y3)2_ 【答案】40【点评】0,0当0时,x10,y3015x,y分别为8的整数部分和小数部分,则2xyy2_【提示】34,_8_4,5由于8介于4与5之间,则其整数部分x?小数部分y?x4,y4 【答案】5【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了(三)选择题:(每小题3分,共15分)16已知x,则()(A)x0(B)x3(C)x3(D)3x0 【答案】D【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义17若xy0,则()(A)2x(B)2y(C)2

6、x(D)2y【提示】xy0,xy0,xy0|xy|yx|xy|xy 【答案】C【点评】本题考查二次根式的性质|a|18若0x1,则等于()(A)(B)(C)2x(D)2x【提示】(x)24(x)2,(x)24(x)2又0x1,x0,x0 【答案】D【点评】本题考查完全平方公式和二次根式的性质(A)不正确是因为用性质时没有注意当0x1时,x019化简a0得()(A)(B)(C)(D)【提示】|a|a 【答案】C20当a0,b0时,a2b可变形为()(A)(B)(C)(D)【提示】a0,b0,a0,b0并且a,b,【答案】C【点评】本题考查逆向运用公式a(a0)和完全平方公式注意(A)、(B)不正

7、确是因为a0,b0时,、都没有意义 【答案】C(四)在实数范围内因式分解:(每小题3分,共6分)219x25y2;【提示】用平方差公式分解,并注意到5y2 【答案】(3xy)(3xy)224x44x21【提示】先用完全平方公式,再用平方差公式分解 【答案】(x1)2(x1)2(五)计算题:(每小题6分,共24分)23()();【提示】将看成一个整体,先用平方差公式,再用完全平方公式【解】原式()252326224;【提示】先分别分母有理化,再合并同类二次根式【解】原式43125(a2)a2b2;【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式【解】原式(a2)26()()(

8、ab)【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分【解】原式【点评】本题如果先分母有理化,那么计算较烦琐(六)求值:(每小题7分,共14分)27已知x,y,求的值【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值【解】x52,y52xy10,xy4,xy52(2)21【点评】本题将x、y化简后,根据解题的需要,先分别求出“xy”、“xy”、“xy”从而使求值的过程更简捷28当x1时,求的值【提示】注意:x2a2,x2a2x(x),x2xx(x)【解】原式=当x1时,原式1【点评】本题如果将前两个“分式”分拆成两个“分式”之差,那么化简会更简便即原式七、解答题:(每小题8分,共16分)29计算(21)()【提示】先将每个部分分母有理化后,再计算【解】原式(21)()(21)()()()()(21)()9(21)【点评】本题第二个括号内有99个不同分母,不可能通分这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消这种方法也叫做裂项相消法30若x,y为实数,且y求的值【提示】要使y有意义,必须满足什么条件?你能求出x,y的值吗?【解】要使y有意义,必须,即x当x时,y又|x,y,原式2当x,y时,原式2【点评】解本题的关键是利用二次根式的意义求出x的值,进而求出y的

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服