ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:437.54KB ,
资源ID:2171276      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2171276.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022版高考数学一轮复习-第3章-导数及其应用-第2节-第1课时-导数与函数的单调性学案新人教B版.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022版高考数学一轮复习-第3章-导数及其应用-第2节-第1课时-导数与函数的单调性学案新人教B版.doc

1、2022版高考数学一轮复习 第3章 导数及其应用 第2节 第1课时 导数与函数的单调性学案新人教B版2022版高考数学一轮复习 第3章 导数及其应用 第2节 第1课时 导数与函数的单调性学案新人教B版年级:姓名:第2节导数的应用第1课时导数与函数的单调性一、教材概念结论性质重现导数与函数的单调性的关系条件结论函数yf(x)在区间(a,b)上可导f(x)0f(x)在(a,b)内单调递增f(x)0在区间(a,b)上成立”是“f(x)在区间(a,b)上单调递增”的充分不必要条件二、基本技能思想活动体验1判断下列说法的正误,对的打“”,错的打“”(1)若函数f(x)在区间(a,b)上单调递增,那么一定

2、有f(x)0.( )(2)如果函数f(x)在某个区间内恒有f(x)0,则f(x)在此区间内不具有单调性( )(3)若在区间(a,b)内f(x)0且f(x)0的根为有限个,则f(x)在区间(a,b)内是减函数( )2已知函数f(x)的导函数f(x)的图像如图所示,则函数f(x)的图像可能是()A B C DC解析:由导函数f(x)的图像可知,函数yf(x)先减再增,可排除选项A,B;又f(x)0的根为正数,即yf(x)的极值点为正数,所以可排除选项D.故选C.3函数f(x)x33x1的单调递增区间是()A(1,1) B(,1)C(1,) D(,1),(1,)D解析:f(x)3x23.由f(x)0

3、得x1.故函数f(x)x33x1的单调递增区间是(,1),(1,)故选D.4已知函数f(x),则()Af(2)f(e)f(3) Bf(3)f(e)f(2)Cf(3)f(2)f(e) Df(e)f(3)f(2)D解析:f(x)的定义域是(0,)因为f(x),所以x(0,e)时,f(x)0;x(e,)时,f(x)f(3)f(2)5若函数f(x)sin xkx在(0,)上是增函数,则实数k的取值范围为_1,)解析:因为f(x)cos xk0,所以kcos x,x(0,)恒成立当x(0,)时,1cos x0,即8x0,解得x,所以函数y4x2的单调递增区间为.故选B.2函数f(x)3xln x的单调递

4、减区间是()A. B.C. D.B解析:因为函数f(x)的定义域为(0,),且f(x)ln xxln x1.令f(x)0,解得0x,所以f(x)的单调递减区间是.3已知定义在区间(,)上的函数f(x)xsin xcos x,则f(x)的单调递增区间为_,解析:f(x)sin xxcos xsin xxcos x令f(x)xcos x0,则其在区间(,)上的解集为,即f(x)的单调递增区间为,.求函数单调区间的步骤(1)确定函数f(x)的定义域;(2)求f(x);(3)在定义域内解不等式f(x)0,得函数f(x)的单调递增区间;(4)在定义域内解不等式f(x)0,则当x(,0)和时,f(x)0;

5、当x时,f(x)0.故f(x)在(,0),上单调递增,在上单调递减若a0,则f(x)在(,)上单调递增若a0;当x时,f(x)0,所以f(x)在(0,)上为增函数(2)当a0时,f(x),则有:当x(0,)时,f(x)0,所以f(x)的单调递增区间为(,)综上所述,当a0时,f(x)的单调递增区间为(0,),无单调递减区间;当a0时,函数f(x)的单调递减区间为(0,),单调递增区间为(,)解决含参数的函数单调性问题的注意点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点已知f(x)xe

6、xa(a0),求函数f(x)的单调区间解:f(x)(x1)(exa),令f(x)0,得x1或xln a.(1)当a时,f(x)0恒成立,所以f(x)在R上单调递增(2)当0a时,ln a0,得x1,由f(x)0,得ln ax时,ln a1,由f(x)0,得xln a,由f(x)0,得1xln a,所以单调递增区间为(,1),(ln a,),单调递减区间为(1,ln a)综上所述,当a时,f(x)在R上单调递增;当0a时,f(x)的单调递增区间为(,1),(ln a,),单调递减区间为(1,ln a)考点3导数与函数单调性的简单应用综合性考向1利用导数解不等式若函数f(x)exexsin 2x,

7、则满足f(2x21)f(x)0的x的取值范围是()A.B.(,1)C.D.(1,)B解析:函数f(x)exexsin 2x,定义域为R,且满足f(x)exexsin(2x)(exexsin 2x)f(x),所以f(x)为R上的奇函数又f(x)exex2cos 2x22cos 2x0恒成立,所以f(x)为R上的单调递增函数由f(2x21)f(x)0,得f(2x21)f(x)f(x),所以2x21x,即2x2x10,解得x1或x.所以x的取值范围是(,1).故选B.利用导数解不等式的关键,是用导数判断函数的单调性,或者构造函数后使用导数同时根据奇偶性变换不等式为f(g(x)f(h(x),利用单调性

8、得出关于g(x),h(x)的不等式,解此不等式得出范围考向2利用导数比较大小(多选题)(2021山东新高考预测卷)定义在上的函数f(x),已知f(x)是它的导函数,且恒有cos xf(x)sin xf(x)f B.f f Cf f D.f f CD解析:构造函数g(x),则g(x)g,所以f f .同理,gg,即f f .故选CD.利用导数比较大小的方法利用导数比较大小,其关键在于利用题目条件中的不等关系构造辅助函数,并得到辅助函数的单调性,进而根据单调性比较大小考向3利用导数求参数的取值范围已知函数f(x)ln x,g(x)ax22x(a0)(1)若函数h(x)f(x)g(x)存在单调递减区

9、间,求a的取值范围;(2)若函数h(x)f(x)g(x)在1,4上单调递减,求a的取值范围解:(1)h(x)ln xax22x,x(0,),所以h(x)ax2.因为h(x)在(0,)上存在单调递减区间,所以当x(0,)时,ax20有解,即a有解设G(x),所以只要aG(x)min即可而G(x)21,所以G(x)min1,所以a1.又因为a0,所以a的取值范围为(1,0)(0,)(2)因为h(x)在1,4上单调递减,所以当x1,4时,h(x)ax20恒成立,即a恒成立由(1)知G(x),所以aG(x)max.而G(x)21.因为x1,4,所以,所以G(x)max(此时x4),所以a.又因为a0,

10、所以a的取值范围是(0,)本例第(2)问中,若h(x)在1,4上存在单调递减区间,求a的取值范围解:若h(x)在1,4上存在单调递减区间,则h(x)0在1,4上有解,所以当x1,4时,a有解又当x1,4时,min1,所以a1.又因为a0,所以a的取值范围是(1,0)(0,)根据函数的单调性求参数的一般思路(1)利用集合间的包含关系处理:yf(x)在区间(a,b)上单调,则区间(a,b)是相应单调区间的子集(2)f(x)单调递增的充要条件是对任意的x(a,b)都有f(x)0且在(a,b)内的任一非空子区间上,f(x)不恒为零,要注意等号是否可以取到(3)注意区分“在区间上恒成立”与“在区间上存在

11、x值使不等式成立”的区别分离参数后对应不同的最值类型1(2021八省联考)已知a5且ae55ea,b4且be44eb,c3且ce33ec,则()Acba BbcaCacb DabcD解析:因为ae55ea,a0.同理,b0,c0.令f(x),x0,则f(x).当0x1时,f(x)1时,f(x)0.故f(x)在(0,1)上单调递减,在(1,)上单调递增因为ae55ea,a5,所以,即f(5)f(a)而0a5,所以0a1.同理,0b1,0cf(4)f(3),所以f(a)f(b)f(c)所以0abc0,且a1,函数f(x)在R上单调递增,则实数a的取值范围是()A(1,5 B2,5C(1,) D(,

12、5B解析:函数f(x)在R上单调递增,则a1.当x1时,f(x)x2aln x,则f(x)2x.因为2x3ax40在1,)上恒成立,所以a2x2在1,)上恒成立因为y2x2在1,)上单调递减,所以ymax2,则a2.当x1时,a145.综上,实数a的取值范围是2,5故选B.3已知函数f(x)x2cos x,x,则满足f(x0)f的x0的取值范围为_解析:f(x)2xsin x当x时,f(x)0,所以f(x)在上单调递增由f(x0)f,知x0.又因为f(x)f(x),所以f(x)为偶函数,所以x0,得x1;令f(x)0,得0x1.所以f(x)的单调递增区间是(1,),单调递减区间是(0,1)(2

13、)由题意g(x)x2aln x,g(x)2x.若函数g(x)为1,)上的单调递增函数,则g(x)0在1,)上恒成立,即a2x2在1,)上恒成立设(x)2x2.因为(x)在1,)上单调递减,所以(x)max(1)0,所以a0.若函数g(x)为1,)上的单调递减函数,则g(x)0在1,)上恒成立,即a2x2在1,)上恒成立因为(x)没有最小值,不满足题意,所以实数a的取值范围为0,)若函数f(x)x3ax21在区间1,2上单调递减,求实数a的取值范围四字程序读想算思求实数a的取值范围1.利用导数研究函数单调性的方法;2从什么角度列不等式求取值范围1.求f(x);2解不等式f(x)0转化与化归、数形

14、结合f(x)在1,2上单调递减由函数f(x)在区间a,b上单调递减可知f(x)0在区间a,b上恒成立,列出不等式f(x)3x22ax x(3x2a)1.函数最值;2不等式恒成立;3一元二次不等式、一元二次方程和二次函数之间的关系思路参考:等价转化为f(x)0对x1,2恒成立,分离变量求最值解:f(x)3x22ax.由f(x)在1,2上单调递减知f(x)0,即3x22ax0在1,2上恒成立,即ax在1,2上恒成立故只需amax,故a3.所以a的取值范围是3,)思路参考:等价转化为f(x)0对x1,2恒成立,数形结合列不等式组求范围解:f(x)3x22ax.由f(x)在1,2上单调递减知f(x)0

15、对x1,2恒成立所以解得a3.所以a的取值范围是3,)思路参考:分类讨论f(x)的单调性,根据区间1,2是单调递减区间的子集求参数范围解:f(x)3x22ax.当a0时,f(x)0,故yf(x)在(,)上单调递增,与yf(x)在区间1,2上单调递减不符,舍去当a0时,由f(x)0,得0xa,即f(x)的单调递减区间为.由f(x)在1,2上单调递减得a2,得a3.综上可知,a的取值范围是3,)1本题考查函数的单调性与导数的关系,解法较多,基本解题策略是转化为不等式恒成立问题,即“若函数f(x)在区间D上单调递增,则f(x)0对xD恒成立;若函数f(x)在区间D上单调递减,则f(x)0对xD恒成立

16、”或利用集合间的包含关系处理:若yf(x)在区间D上单调,则区间D是相应单调区间的子集2基于课程标准,解答本题一般需要运算求解能力、推理论证能力,体现了逻辑推理、数学运算的核心素养3基于高考数学评价体系,本题利用函数的单调性与导函数的关系,将所求问题转化为熟悉的数学模型,解题过程需要知识之间的转化,体现了综合性1已知函数f(x)2cos x(msin x)3x在(,)上单调递减,则实数m的取值范围是()A.1,1 B.C. D.B解析:f(x)2sin x(msin x)2cos x(cos x)3.因为f(x)在(,)上单调递减,所以f(x)0恒成立,整理得4sin2x2msin x50.设

17、sin xt(1t1),则不等式g(t)4t22mt50在区间1,1上恒成立于是有即故实数m的取值范围是.故选B.2已知函数f(x)x3kx在(3,1)上不是单调函数,则实数k的取值范围是_(0,27)解析:(方法一:间接法)若f(x)x3kx在(3,1)上单调递增,则f(x)3x2k0在(3,1)上恒成立,即k3x2在(3,1)上恒成立,故k0.若f(x)x3kx在(3,1)上单调递减,则f(x)3x2k0在(3,1)上恒成立,即k3x2在(3,1)上恒成立,故k27.所以当函数f(x)x3kx在(3,1)上是单调函数时,实数k的取值范围是k0或k27,当函数f(x)x3kx在(3,1)上不是单调函数时,实数k的取值范围是0k0时,由f(x)3x2k0,得x0,得x,在,上f(x)是增函数要满足函数f(x)x3kx在(3,1)上不是单调函数,由对称性得,3,所以k27.综上所述,实数k的取值范围是(0,27)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服