ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:196KB ,
资源ID:2169706      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2169706.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(勾股定理的十六种证明方法大学论文.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

勾股定理的十六种证明方法大学论文.doc

1、 勾股定理的十六种证明方法 【证法1】 此主题相关图片如下: 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 a^2+b^2+4*(ab/2)=c^2+4*(ab/2) 整理得到:a^2+b^2=c^2。 【证法2】 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、

2、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c^2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º, ∴ ∠DHA = 90º+ 90º= 180º. ∴ ABCD是一个

3、边长为a + b的正方形,它的面积等于(a+b)^2. ∴(a+b)^2=c^2+4*(ab/2), ∴ a^2+b^2=c^2。 此主题相关图片如下: 【证法3】 以a、b 为直角边(b>a), 以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º, ∴ ABCD是一个边长为c的正方形,它的面积等于c^2. ∵ EF = FG =GH =HE = b―

4、a , ∠HEF = 90º. ∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)^2. ∴(b-a)^2+4*(ab/2)=c^2, ∴ a^2+b^2=c^2。 此主题相关图片如下: 【证法4】 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90

5、º= 90º. ∴ ΔDEC是一个等腰直角三角形, 它的面积等于c^2/2. 又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD∥BC. ∴ ABCD是一个直角梯形,它的面积等于(a+b)^2/2 (a+b)^2/2=2*ab/2+c^2/2, ∴ a^2+b^2=c^2。 此主题相关图片如下: 【证法5】 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,

6、∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º, BC = BD = a. ∴ BDPC是一个边长为a的正方形.

7、同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 a^2+b^2=S+2*ab/2 c^2=S+2*ab/2 ∴ a^2+b^2=c^2。 此主题相关图片如下: 【证法6】 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90º,QP∥BC, ∴ ∠MPC = 90º, ∵ BM

8、⊥PQ, ∴ ∠BMP = 90º, ∴ BCPM是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 此主题相关图片如下: 【证法7】 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连

9、结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, ∵ ΔFAB的面积等于a^2/2, ΔGAD的面积等于矩形ADLM的面积的一半, ∴ 矩形ADLM的面积 =a^2. 同理可证,矩形MLEB的面积 =b^2. ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ a^2+b^2=c^2。 此主题相关图片如下: 【证法8】 如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥

10、AB,垂足是D. 在ΔADC和ΔACB中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB. AD∶AC = AC ∶AB, 即 AC^2=AD*AB. 同理可证,ΔCDB ∽ ΔACB,从而有 BC^2=BD*AB. ∴ AC^2+BC^2=(AD+BD)*AB=AB^2,即 a^2+b^2=c^2。 此主题相关图片如下: 【证法9】 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交G

11、T于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H. ∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC. 又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c, ∴ RtΔDHA ≌ RtΔBCA. ∴ DH = BC = a,AH = AC = b. 由作法可知, PBCA 是一个矩形, 所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a.   ∵ RtΔDGT ≌ RtΔBCA , RtΔD

12、HA ≌ RtΔBCA. ∴ RtΔDGT ≌ RtΔDHA . ∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º, ∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH是一个边长为a的正方形.   ∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a . ∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a). 用数字表示面积的编号(如图),则以c为边长的正方形的面积为 此主题相关图片如下: 【证法1

13、0】 设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图). ∵ ∠ TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b, ∴ RtΔHBT ≌ RtΔABE. ∴ HT = AE = a. ∴ GH = GT―HT = b―a. 又∵ ∠GHF + ∠BHT = 90º, ∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,

14、∴ ∠GHF = ∠DBC. ∵ DB = EB―ED = b―a, ∠HGF = ∠BDC = 90º, ∴ RtΔHGF ≌ RtΔBDC. 即 S7=S2. 过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌ RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 S8=S5. 由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE. ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠C

15、AR = 90º,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR. 又∵  ∠QMF = ∠ARC = 90º,QM = AR = a, ∴ RtΔQMF ≌ RtΔARC. 即S4=S6. 此主题相关图片如下: 【证法11】 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得 此主题相关图片如下: 【证法12】 在RtΔABC中,设直角边BC =

16、 a,AC = b,斜边AB = c(如图). 过点A作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有 此主题相关图片如下: 【证法13】 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r. ∵ AE = AF,BF = BD,CD = CE, ∴ AC+BC-AB=(AE+CE)+(BD+CD)-(AF-BF) = CE+CD= r + r = 2r, 此主题相关图片如下: 【证法14】 如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 此主题相关图片如下: 【证法15】 此主题相关图片如下: 设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD.  把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 (a+b)^2=a^2+2ab+b^2;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面 此主题相关图片如下:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服