ImageVerifierCode 换一换
格式:DOCX , 页数:62 ,大小:1.37MB ,
资源ID:2167190      下载积分:14 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2167190.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(人教版高中数学基础知识总结.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

人教版高中数学基础知识总结.docx

1、人教版高中数学基础知识总结第一章 人教版高中数学基础知识总结第二章第三章 第四章 编辑整理:第五章第六章第七章第八章第九章 尊敬的读者朋友们:第十章 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版高中数学基础知识总结)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。第十一章 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为人教版高中数学基础知识总结的全部内容。第十二章62第十三章 集合与常用

2、逻辑用语第1课时集合的概念与运算1集合与元素(1)某些指定的对象集在一起就成为一个集合其中每个对象叫做集合中的元素集合中的元素具有确定性、互异性、无序性三个特性(2)集合的两种表示法:其中列举法指的是将集合中的元素一一列举出来写在大括号内;描述法指的是将集合元素的公共属性写在大括号内2集合间的基本关系(1)子集:A中任意一个元素均为B中的元素,记为AB或BA.(2)真子集:A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素,记为AB或BA.(3)空集:空集是任何集合A的子集(A),是任何非空集合B的真子集(B(B)3集合的基本运算(1)并集:由属于A或属于B的所有元素构成的集合

3、,记为AB。(2)交集:由既属于A又属于B的所有元素构成的集合,记为AB.(3)补集:若全集为U,A是U的子集,则由属于U但不属于A的所有元素构成的集合,记为UA。1必明辨的2个易错点(1)在求集合或进行集合运算时,容易忽视集合元素的互异性而出错(2)在运用BA,ABB,ABA往往会忽视B的情况2解集合问题常用的方法(1)集合是由元素构成的,认清集合的元素对于处理集合之间的关系及进一步认识集合是非常重要的(2)用好韦恩图,韦恩图是集合特有的,它是集合中将抽象问题转化为具体问题的重要工具第2课时命题及其关系、充分条件与必要条件1命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断

4、为真的语句叫做真命题,判断为假的语句叫做假命题2四种命题及其关系(1)四种命题若原命题为“若p,则q”,则其逆命题是若q,则p;否命题是若綈p,则綈q;逆否命题是若綈q,则綈p。(2)四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系3充分条件、必要条件与充要条件(1)“若p,则q”为真命题,记作:pq,则p是q的充分条件,q是p的必要条件(2)如果既有pq,又有qp,记作:pq,则p是q的充要条件,q也是p的充要条件1必明辨的2个易错点(1)充分条件与充分不必要条件及必要条件与必要不充分条件的区别与联系(2)在探求充分条件或必要条件

5、时要注意所判断命题的类别2求解充要条件问题常用的4种方法(1)利用原命题及逆命题:若仅原命题成立,则原命题的条件是结论的充分不必要条件;若仅逆命题成立,则原命题的条件是结论的必要不充分条件;若原命题与逆命题都成立,则原命题的条件是结论的充要条件;若原命题与逆命题都不成立,则原命题的条件既不是结论的充分条件也不是必要条件(2)利用逆否命题及否命题:由于原命题与逆否命题等价、逆命题与否命题等价;因而在第一条途径失效时,要选择逆否命题及否命题(3)利用“,”,若AB,则A是B的充分条件,B是A的必要条件;若AB,则A是B的充要条件(4)利用集合之间的包含关系:设MxA(x)成立,Nx|B(x)成立;

6、显然,AB当且仅当MN;即当且仅当MN时,A是B的充分条件,B是A的必要条件;MN时,A是B的充要条件第3课时简单的逻辑联结词、全称量词与存在量词1简单的逻辑联结词(1)用联结词“且”联结命题p和命题q,记作pq,读作“p且q”(2)用联结词“或”联结命题p和命题q,记作pq,读作“p或q(3)对一个命题p全盘否定记作綈p,读作“非p”或“p的否定2全称量词与存在量词(1)全称量词与全称命题短语“对所有的”、“对任意一个”在逻辑中通常叫做全称量词,并用符号“”表示含有全称量词的命题,叫做全称命题全称命题“对M中任意一个x,有p(x)成立”可用符号简记为:xM,p(x),读作“对任意x属于M,有

7、p(x)成立”(2)存在量词与特称命题短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“”表示含有存在量词的命题,叫做特称命题特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为:x0M,p(x0),读作“存在一个x0属于M,使p(x0)成立”3含有一个量词的命题的否定命题命题的否定xM,p(x)x0M,綈p(x0)x0M,p(x0)xM,綈p(x)1必明辨的2个易错点(1)否命题与含有一个量词的命题的否定后者是以含有量词且仅含一个为前提的命题,否则,就不谈否定显然,并非所有的命题都可以写否定但任何一个命题存在否命题(2)书写命题的否定时,要结合全称量词与特称量词的

8、特点进行2解逻辑联结词及命题的否定常用的方法(1)利用命题的等价性对命题进行转化,即若綈pq,则綈qp.(2)书写含有一个量词的命题的否定时,有两个步骤:即转换量词与否定结论 第二章基本初等函数、导数及其应用第1课时函数及其表示1函数的概念(1)函数的定义域、值域:在函数yf(x),xA中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域(2)函数的三要素:定义域、值域和对应关系2函数的表示方法表示函数的常用方法有:解析法、列表法、图象法3分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种

9、函数称为分段函数分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数1必明辨的2个易错点(1)函数与映射的区别与联系,函数是特殊的映射,二者区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集(2)两函数在什么条件下为同一函数?定义域、对应关系分别相同,两函数即为同一函数2理解函数概念中的2个关键词理清函数定义中的“任意x”与“唯一y”的含义3掌握求函数解析式的4种常见方法凑配法、换元法、消元法及待定系数法第2课时函数的单调性与最值1函数的单调性(1)一般地,设函数f(x)的定义域为I。如果

10、对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数,都有f(x1)f(x2),那么就说函数f(x)在区间D上是减函数(2)单调性、单调区间的定义:若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间2函数的最值设函数yf(x)的定义域为I,如果存在实数M满足:(1)对于任意xI,都有f(x)M且存在x0I,使得f(x0)M,M为最大值(2)对于任意xI,都有f(x)M且存在x0I,使得f(x0)M,M为最小值1必明辨的2个易错点(1)函数f(x)

11、在区间a,b上单调递增,与函数f(x)的单调递增区间为a,b含义不同(2)函数的最值与函数值域的关系2牢记2种方法(1)借助图象求函数的单调区间(2)用“同增异减求复合函数的单调区间第3课时函数的奇偶性与周期性1函数的奇偶性(1)如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是偶函数(2)如果对于函数f(x)的定义域内任意一个x,都有f(x)f(x),那么函数f(x)是奇函数2周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)f(x),那么就称函数yf(x)为周期函数,称T为这个函数的周期(2)最小正

12、周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期3对称性(1)偶函数关于y轴对称(2)奇函数关于原点对称(3)若函数f(x)满足f(ax)f(ax)或f(x)f(2ax),则函数f(x)关于直线xa对称4单调性与奇偶性的关系(1)偶函数在原点两侧的增减性相反(2)奇函数在原点两侧的增减性一致1必明辨的2个易错点(1)奇、偶函数的定义域的特点若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称反之,若函数的定义域不关于原点对称,则该函数无奇偶性(2)并非所有的周期函数都有最小正周期2求解奇偶性与周期性问题应注意以下2点(1)关注函数的定义

13、域(2)若函数f(x)满足ff(x)或f或f,T0,则f(x)是周期函数,且周期为T。第4课时二次函数与幂函数1二次函数的解析式的几种常用表达形式(1)一般式:f(x)ax2bxc(a0);(2)顶点式:f(x)a(xh)2k(a0),(h,k)是顶点;(3)标根式(或因式分解式):f(x)a(xx1)(xx2)(a0),其中x1,x2分别是f(x)0的两实根(4)重要性质(设f(x)ax2bxc(a0)对称轴方程为x;a0时,抛物线开口向上,函数在上递减,在上递增,f(x)min;a0时,抛物线开口向下,函数在上递增,在上递减,f(x)max;f(x)ax2bxc(a0)的顶点坐标为。2幂函

14、数的定义(1)定义:形如yx(R)的函数称为幂函数,其中x是自变量,为常数(2)五种常见幂函数的图象与性质函数特征性质yxyx2yx3yxyx1图象定义域RRRx|x0xx0值域Ryy0Ry|y0y|y0奇偶性奇偶奇非奇非偶奇单调性增(,0)减(0,)增增增(,0)和(0,)减公共点(1,1)1必明辨的2个易错点(1)求闭区间上二次函数的最值要结合图象,不可直接代入区间端点产生(2)幂函数yx,当0或1时的图象都是一条直线的说法是不正确的;因为幂函数f(x)x0(x0)的图象,是直线除去一个点2求解二次函数与幂函数问题时常用方法(1)二次函数yax2bxc(a0)中三个字母的各自使命a决定了开

15、口方向;a,b共同决定对称轴位置;c决定与y轴的交点位置(2)用待定系数法求二次函数解析式(3)幂函数在第一象限的单调性决定了幂指数的符号,反之亦然 第5课时指数函数1根式的概念如果xna,那么x叫做a的n次方根当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数;当n为偶数时,正数的n次方根有两个,它们互为相反数2有理指数幂(1)分数指数幂的表示正数的正分数指数幂是:a(a0,m,nN,n1)正数的负分数指数幂是:a(a0,m,nN,n1)(2)有理指数幂的运算性质arasars(a0,r,sQ)(ar)sars(a0,r,sQ)(ab)rarbr(a0,b0,rQ)3指数函数的

16、图象及其性质a10a1图象定义域R值域(0,)性质过定点(0,1),即x0时,y1当x0时,y1;当x0时,0y1当x0时,0y1在(,)上是增函数在(,)上是减函数温馨提示:指数函数的单调性是由底数a的大小决定的,因此解题时通常对底数a按0a1和a1进行分类讨论第6课时对数函数1对数的概念及运算法则(1)对数的定义,如果axN(a0,且a1),那么数x叫做以a为底N的对数,记作xlogaN,其中a叫做对数的底数,N叫做真数(2)对数的常用关系式对数恒等式:aN(a0且a1,N0);换底公式:logab(b0,a、c均大于0且不等于1)(3)对数的运算法则如果a0,且a1,M0,N0,那么lo

17、ga(MN)logaMlogaN;logalogaMlogaN;logaMnnlogaM(nR);logamMnlogaM(nR,m0)2对数函数的图象与性质a101时,y0;当0x1时,y0当x1时,y0;当00在(0,)上是增函数在(0,)上是减函数温馨提示:解决与对数函数有关的问题时易漏两点:(1)函数的定义域;(2)对数底数的取值范围3反函数指数函数yax(a0且a1)与对数函数ylogax(a0且a1)互为反函数,它们的图象关于直线yx对称1必明辨的3个易错点(1)对数恒等式是有条件的等式(2)与对数函数复合的复合函数求单调区间时,容易忽略定义域(3)忽略对底数的讨论2比较两个对数大

18、小的3种方法(1)底数大于1,真数大于1,或底数大于0小于1,真数大于0小于1称为相同,此时,函数值大于0。否则为不同,函数值小于0.简记为“相同大于零,不同小于零”(2)在比较真数相同,底数不同的两个对数大小时,若底数大于1,称“递增”(大于0小于1,称“递减”)真数大于1(或大于0小于1),称“真底同(异)向”,此时符合“递增又同向”便有“底小值居上”注意若出现“增”与“同”改一个字,结论中的“上”要改为“下”改两个字则结论不变(3)利用对数函数的图象及图象性质解题第7课时函数的图象及其应用1作图作函数的图象有两条基本途径:(1)描点法:其基本步骤是列表、描点、连线首先确定函数的定义域,化

19、简函数解析式,讨论函数的性质(奇偶性、单调性、周期性、对称性、值域);其次列表(尤其注意特殊性,如最大值、最小值、与坐标轴的交点);最后描点,连线(2)图象变换法,常见的四种变换:平移变换(左加、右减、上加、下减);伸缩变换;翻折变换;对称变换2识图绘图、识图是学习函数、应用函数的一项重要基本功,是数形结合解题方法的基础识图要首先把握函数的定义域、值域、单调区间、奇偶性或图象的对称特征、周期性、与坐标轴的交点,另外有无渐近线,正、负值区间等都是识图的重要方面,要注意函数解析式中含参数时,怎样由图象提供信息来确定这些参数3用图函数图象形象地显示了函数的性质,为研究数量关系提供了“形的直观性,它是

20、探求解题途径,获得问题结果的重要工具要重视数形结合解题的思想方法做一做1(1)函数yxx的图象大致是()(2)函数yex的图象()A与yex的图象关于y轴对称B与yex的图象关于坐标原点对称C与yex的图象关于y轴对称D与yex的图象关于坐标原点对称解析:(1)选A。yxx(2)选D.由题意知D项正确1必明辨的2个易错点(1)函数yf(x)的图象关于原点对称与两函数的图象关于原点对称是有区别的函数yf(x)的图象关于某直线对称与两函数的图象关于某直线对称也是有区别的(2)利用图象求解问题很直观、很方便,但要看到有时是不准确的第8课时函数与方程1函数的零点(1)函数零点的定义对于函数yf(x)(

21、xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点(2)几个等价关系方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点(3)函数零点的判定(零点存在性定理)如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0),xR振幅周期频率相位初相ATfx2用五点法画yAsin(x)一个周期内的简图用五点法画yAsin(x)一个周期内的简图时,要找五个关键点,如下表所示。xx02yAsin(x)0A0A03函数ysin x的图象变换得到yAsin(x)(A0,0)的图象的步骤4图象的对称性函数yAsin(x)(A0,0)的图象是轴对称

22、也是中心对称图形,具体如下:(1)函数yAsin(x)的图象关于直线xxk(其中xkk,kZ)成轴对称图形(2)函数yAsin(x)的图象关于点(xk,0)(其中xkk,kZ)成中心对称图形1必明辨的2个易错点(1)求函数f(x)sin(x)(0)的单调区间,要首先利用诱导公式,将x的系数转化为正数后求解(2)初相变换与周期变换的顺序不同,平移的距离往往也不同练一练2解函数yAsin(x)的图象及三角函数模型的简单应用问题常用的方法(1)“五点法”作函数yAsin(x)(A0,0)的图象(2)由ysin x的图象变换得到yAsin(x)(A0,0)的图象,由于周期变换、初相变换与振幅变换三种顺

23、序不同将产生的方式不同第7课时正弦定理和余弦定理1正弦定理2R(R为ABC外接圆半径)(1)边化角形式:a2Rsin_A,b2Rsin_B,c2Rsin_C.(2)角化边形式:sin A,sin B,sin C.(3)边角基本关系式:abcsin_Asin_Bsin_C;。2余弦定理(1)求边:a2b2c22bccos_A;b2c2a22accos_B;c2a2b22abcos_C。(2)求角cos A;cos B;cos C.3三角形面积公式SABCabsin Cbcsin Aacsin B。1必明辨的2个易错点(1)应用正弦定理已知两边和其中一边对角求另一边对角时,容易忽视解的判断(2)在判断三角形的形状时,等式两边一般不要约去因式,防止漏解2牢记3个结论(1)三角形的内角和定理及由此产生的三角关系,如sin(AB)sin C;cos(AB)cos C.(2)内

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服