ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:425.51KB ,
资源ID:2165827      下载积分:7 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2165827.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(新课标人教B版高中数学必修3概率统计习题精选精讲.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

新课标人教B版高中数学必修3概率统计习题精选精讲.doc

1、习题精选精讲平均数、众数和中位数这里说的“三数”是指平均数、众数和中位数要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明学习平均数、众数和中位数应注意以下几个问题:一、正确理解平均数、众数和中位数的概念1平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化众数在一组数据中出现次数最多的数据叫做这一组数据的众数一组数据中的众数有时不唯一众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)

2、数据就可以了当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数)一组数据中的中位数是唯一的二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和我们要关注的问题三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题下面举几例说明例1

3、李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期收获时,从中任选并采摘了10棵树的樱桃,分别称得每棵树所产樱桃的质量如下表:序号12345678910质量(千克)14212717182019231922据调查,市场上今年樱桃的批发价格为每千克15元用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为()A200千克,3000元 B1900千克,28500元C2000千克,30000元 D1850千克,27750元简析:依题意此果园平均每棵树所产樱桃的质量是(千克),所以100棵树所产樱桃的的质量是(千克),又批发价格为每千克15元,所以2000千克的樱

4、桃所得的总收入为(元),故应选C例2(陕西省)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表:每周做家务的时间(小时)011.522.533.54人数(人)2268121343根据上表中的数据,回答下列问题:(1)该班学生每周做家务劳动的平均时间是多少小时?(2)这组数据的中位数、众数分别是多少?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受简析:(1)该班学生每周做家务劳动的平均时间为(小时),即该班学生每周做家务劳动的平均时间为2.44小时(2)由表中的数据我们可以发现这组数据的中位数是2.5(小时),众数是3(小时)(3)只

5、要叙述内容与上述数据有关或与做家务劳动有关,并且态度积极即可极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.一、 极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,实际生活中我们经常用到极差.如一支足球队队员中的最大年龄与最小年龄的差,一个公司成员中最高收入与最低收入的差等都是极差的例子.极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏

6、离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、xn的平均数为,则该组数据方差的计算公式为:.三、标准差 在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的

7、现象.5典型例析例1 从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:(单位:cm)甲: 21 42 39 14 19 22 37 41 40 25乙: 27 16 40 41 16 44 40 40 27 44(1)根据以上数据分别求甲、乙两种玉米的极差、方差和标准差.(2)哪种玉米的苗长得高些;(3)哪种玉米的苗长得齐.分析:本题既是一道和极差、方差和标准差计算有关的问题,又是利用方差解决实际问题的一道题目.要求极差,只要用数据中最大值减去最小值,求到差值即可.利用方差的计算公式可以求到方差,将方差开平方就得标准差. 解: 甲的极差: 42-14=28(cm); 乙的极差:44-1

8、6=28(cm).甲的平均值:乙的平均值:甲的方差:,乙的方差:(2)因为甲种玉米的平均高度小于乙种玉米的平均高度,所以一种玉米的苗长的高.(3)因为,所以甲种玉米的苗长得整齐.例2 市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测,跳过1.65m就很可能获得冠军

9、,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m才能得冠军呢?解析:本题是一道数据分析有关的实际问题,主要考查数据的平均数、方差的计算方法及处理数据的能力.根据平均数及方差的计算公式可得(1)=1.69(m),=1.68(m). (2)=0.0006(m2),=0.0035(m2),因为,所以甲稳定.(3)可能选甲参加,因为甲8次成绩都跳过1.65m而乙有3次低于1.65m; 可能选乙参加,因为甲仅3次超过1.70m.三类概率问题的求解策略对于一个概率题,我们首先要弄清它属于哪一类型的概率,因为不同的类型需要采取不同类型的概率公式和求解方法;其次,要审清题意,注意问题中的关键语句

10、,因为这些关键语句往往蕴含着解题的思路和方法。下面略举数例谈谈几种概率应用题的解题技巧和策略。一、可能性事件概率的求解策略对于可能性事件的概率问题,除了要用到排列、组合的知识来解决外,还要用到排列、组合的解题思路和方法,同时,在利用概率的古典定义来求可能性事件的概率时,应注意按下列步骤进行:求出基本事件的总个数n;求出事件A中包含的基本事件的个数m;求出事件A的概率,即例1 甲、乙两名学生参加某次英语知识竞赛,该竞赛共有15道不同的题,其中听力题10个,判断题5个,甲乙两名学生依次各抽一题。分别求下列问题的概率:(1)甲抽到听力题,乙抽到判断题;(2)甲乙两名学生至少有一人抽到听力题。解析 甲

11、、乙依次抽一题的结果有(个)(1)甲抽到听力题、乙抽到判断结果有(个),故所求概率为;(2)(用间接法)甲、乙两名学生都抽不到听力题的结果有,其概率为,从而甲乙两名学生至少有一人抽到听力题的概率为。二、互斥事件概率的求解策略对于互斥事件的概率问题,通常按下列步骤进行:确定众事件彼此互斥;众事件中有一个发生;先求出众事件分别发生的概率,然后再求其和。对于某些复杂的互斥事件的概率问题,一般应考虑两种方法:一是“直接法”,将所求事件的概率化成一些彼此互斥的事件的概率的和;二是用“间接法”,即先求出此事件的对立事件的概率,再用求出结果。例2 从12双不同颜色的鞋中任取10只,求至少有一双配对的概率。解

12、析 直接法 记“取出10只鞋中恰好有1双、2双、3双、4双、5双配对的概率分别为、则至少有一双配对的概率为间接法 设至少有一双配对的概率为P(A),则为所抽的10只鞋都不配对的概率,即,所以三、相互独立事件同时发生的概率的求解策略对于相互独立事件同时发生的概率问题,其求解的一般步骤是:确定众事件是相互独立的;确定众事件会同时发生;先求每个事件发生的概率,再求它们的积。例3 在我军的一场模拟空战演习中,我军甲、乙、丙三名飞行员向同一假想敌机炮击,已知甲乙丙三名飞行员击中敌机的概率分别为0.4、0.5和0.7。(1)求敌机被击中的概率;(2)若一名飞行员击中,敌机坠毁的概率是0.2,若两名飞行员击

13、中,敌机坠毁的概率是0.6,若三名飞行员击中,则敌机必然坠毁,求敌机坠毁的概率。解析 (1)设P(A)、P(B)、P(C)分别表示甲、乙、丙三名飞行员击中敌机的概率,则三名飞行员同时没有击中敌机的概率为,故敌机被击中的概率为。(2)设一名飞行员击中,两名飞行员击中、三名飞行员击中敌机的事件分别为、则概率的计算方法一、公式法利用公式就可以计算随机事件的概率,这里,如果A为不确定事件,那么01例1中国体育彩票每100万张一组,每张2元,设特等奖1名,奖金30万元;一等奖10名,各奖5万元;二等奖10名,各奖1万元;三等奖100名,各奖100元;四等奖1000名,各奖20元;五等奖10万名,各奖2元

14、小王花2元买了1张彩票,那么他获奖的概率是多少?他得特等奖、一等奖、二等奖、三等奖、四等奖、五等奖的概率分别是多少?解:一组体育彩票等分成100万份,其中特等奖1份,一等奖是10份,二等奖是10份,三等奖100份,四等奖是1000份,五等奖是10万份,因此对于小王来说,有;二、列表法例2如果每组3张牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少?第一张牌的牌面数字解:利用列表法:第二张牌的牌面数字1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)列表中两次

15、出现1,2,3点的可能性相同,因而共有9中可能,而牌面数字和等于4的情况有(1,3),(2,2),(3,1),3中可能,所以牌面数字和等于4的概率等于,即三、树状图法如上题的另一中解法,就利用用树状图法来解:(5)(4)开始2133(2)(3)(3)(4)(5)(6)12223(4)113总共9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为等于,即例3求:连续掷一枚均匀的硬币,出现一正一反的概率解:本题采用树状图分析法:正反反正开始反正(正,正)(正,反)(反,正)(反,反)由树状图知共有4种可能,出现“一正一反”的

16、有两种,概率为,即本题也可采用列表法来解:第2次第1次正反正(正,反)(反,正)反(正,反)(反,反)由表知共有4种可能,出现“一正一反”共2次,概率为,即四、面积法几何概型的概率的求解方法往往与面积的计算相结合ABCD例4如图,矩形花园ABCD,AB为4米,BC为6米,小鸟任意落下,则小鸟落在阴影区的概率是多少?解:矩形面积为:4624(米),阴影部分面积为:(米),练习:1袋中装有3个红球,1个白球,除颜色外完全相同(1)用实验的方法估计,从袋中随机摸出一球,是白球的概率(2)计算从袋中随机摸出一球,是白球的概率是多少?(3)实验估计结果与理论概率一致吗?为什么?你认为要得到较为准确的估计

17、值,应注意哪些问题?2在摸牌游戏中,每组有三张牌,第一组牌面数字分别是2,3,4,第二组牌面数字分别是3,4,5,从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?是多少?3三张除数字完全相同的纸牌,数字为1,2,3,每次抽取一张为一次实验,多少次实验后汇总下表:摸牌次数2050100200300400500奇数92875172195176310奇数频率457562(1)将表格补充完整;(2)观察上面的表格,你估计出现奇数的概率为多少?(3)通过对表格的仔细观察,你有什么想法和感悟?4一张有重要情报的纸片,被随意藏在下面涂有黑、灰、白三种颜色的图形中(1)藏在那种颜色的区域的概率最大?

18、(2)藏在哪两种颜色区域内的概率相同?(3)分别计算藏在三种颜色区域内的概率?5下表左拦是五个装有一些彩色小球的口袋,右栏是五个愿望,请为每一愿望找一个口袋,使这一愿望最有希望实现口袋愿望A袋中装着1个红球、19个白球想取出一个黄球B袋中装着20个红球想取出一个绿球C袋中装着10个红球、10个绿球想取出一个白球D袋中装着18个红球、1个黄球、1个白球想取出一个红球E袋中装着10个红球、6个白球、4个绿球想同时取出一个白球和一个绿球6如图3,有两个可以自由转动的均匀转盘A,B,转盘A被均匀地分成4等分,每份分别标上1、2、3、4四个数字;转盘被均匀地分成6等分,每份分别标上1、2、3、4、5、6

19、六个数字,有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数作乘积,如果得到的积是偶数,那么甲胜;如果得到的积是奇数,那么乙胜(如转盘A指针指向3,转盘B指针指向5,3515,按规则乙胜)641532图34321你认为这样的规则是否公平?请说明理由;例析概率问题与各章知识的精彩交汇 一、 概率问题与函数知识的交汇例1:多项飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次.一运动员

20、在进行训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离S(米)成反比,现有一碟靶抛出后S(米)与飞行时间t(秒)满足S=15(t+1),(0t4).假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击,求他命中此碟靶的概率?解析:设P=(K为非0常数),则P=当t=0.5秒时,P1=0.8 ,代入上式得K=18 , P=当t=1秒时,P2=0.6因此 P= P1+(1- P1)P2=0.8+(1-0.8)0.6=0.92二、 概率问题与向量、数列知识的交汇 例2:从原点出发的某质点M,按向量a=(

21、0,1)移动的概率为2/3,按向量b=(0,2)移动的概率为1/3,设M可到达点(0,n)的概率为Pn (1)求P1和P2的值;(2)求证:=;(3)求的表达式。解析:(1)P1= ,P2=()2+= (2)证明:M到达点(0,n+2)有两种情况:从点(0,n+1)按向量a=(0,1)移动;从点(0,n)按向量b=(0,2)移动. + =(3)数列是以P2-P1为首项,-为公比的等比数列. = (P2-P1)(-)n-1=(-)n-1=(-)n+1,=(-)n,又=()+()+(P2-P1) =(-)n+(-)n-1+(-)2=()1- (-)n-1+()1- (-)n-1= (-)n三、 概

22、率问题与平面几何知识的交汇 例3:两人相约在7点到8点在某地会面,先到者等候另一个人20分钟方可离去. 试求这两人能会面的概率? 解析:(如图)这是几何概型问题. 以X、Y分别表示两人到达时刻,建立直角坐标系如图: 则0X60, 0Y60。两人能会面的充要条件是|X-Y|20P=四、 概率问题与立体几何知识的交汇例4:质地均匀的三个几何体A、B、C. A是硬币,正面涂红色,反面涂黄色;B是正四面体涂了红黄蓝白四色,每面一色;C是正方体,每面涂一色,涂有红黄蓝三色,每种颜色两个面,在水平地面上依次投A、B、C各一次,几何体与地面接触的面的颜色称为“保留色”。(1) 求A、B、C的“保留色”相同的

23、概率;(2) 求A、B、C的“保留色”恰为两个红色的概率;(3) 求A、B、C的“保留色”互不相同的概率;解析:(1)当A、B、C的“保留色”相同可分为同红或同黄, P1= (2)“恰为两个红色”有三种情况,即A、B同红色;B、C同红色;A、C同红色P2= (3)解法(一)按先投A,再投C,最后投B的顺序可得P3=解法(二)按先投A,再投B,最后投C的顺序则需分两类,当B投得的“保留色”为白色时,则此时三者的“保留色”互不相同的概率是= ;当B投得的“保留色”不为白色时,则此时三者的“保留色”互不相同的概率是=,A、B、C的“保留色”互不相同的概率P3=+=解法(三)反面解之,P3=1- P1

24、-2P2 - (其中为B、C同蓝色的概率)由上观之,对概率知识的学习,尤其是高三总复习阶段,如果能打破知识条块系统的限制,串点成线,寻找合适的知识载体,精心选编复习内容,在知识的交汇点,方法的多样性,思维的灵活性能力的综合性上讨论问题,将有利于提高学习效益.附相关练习及答案:1、从集合0,1,2,3,5,7,11中任取3个元素分别作为方程Ax+By+C=0中的A、B、C。所得直线恰好经过坐标原点的概率是 。 2、将一个各个面上均涂有红颜色的正方体锯成64个同样大小的小正方体。(1)从这些小正方体中任取1个,其中恰好有奇数个面涂有红颜色的概率是多少?(2)从这些小正方体中任取2个,至少有一个小正

25、方体的某个面或某几个面涂有红颜色的概率是多少?3.、在某物理实验中,有两粒子a,b分别位于同一直线上A、B两点处(如图所示),|AB|2,且它们每隔1秒必向左或向右移动1个单位,如果a粒子向左移动的概率为,b粒子向左移动的概率为. (1)求2秒后,a粒子在点A处的概率;(2)求2秒后,a,b两粒子同时在点B处的概率.4袋里装有35个球,每个球上都标有从1到35的一个号码,设号码n的球重(克)这些球以等可能性(不受重量的影响)从袋里取出(1)如果任意取出一球,试求其重量大于号码数的概率;(2)如果同时任意取出二球,试求它们重量相同的概率5某超市为扩大销售调查进入该超市顾客的人数,经观察,在一段时

26、间内,进入超市为n个人的概率为p (n)满足关系(1) 求一个顾客也没有的概率p(0);(2)求一段时间进入该超市顾客的期望值。1答 ,2答、(1) (2),3答. (1) +=.(2) =.4解(1)由不等式得n15,n3,由题意知n1,2,或n16,17,35于是所求概率为(2)设第n号与第m号的两个球的重量相等,其中nm,则有,所以,因为nm,所以nm15,(n,m)(1,14),(2,13),(7,8),但从35个球中任取两个的方法数为,故,所求概率为巧求概率一、注意每次实验的步数,有放回与无放回例1袋中有1个白球,2个黄球,问(1)从中一次性地随机摸出2个球,都是黄球的概率是多少?(

27、2)先从中摸出一球,再从剩下的球中摸出一球,两次都是黄球的概率是多少?(3)先从中摸出一球,将它放回口袋中后,再摸一次,两次都是黄球的概率是多少?解析:(1)从袋中一次性地摸出2个球,作为一次实验,此实验就此一步,从袋中一次性地摸出2个球的结果总数为3,都是黄球的结果数为1,所以概率为(2)先从中摸出一球,再从剩下的球中摸出一球,作为一次实验,此实验分为两步,第一步为:从袋中摸出一球,第二步为:再从剩下的球中摸出一球法一:画树状图由树状图可看出,总结果数为6,两次都是黄球的结果数为2,所以两次都是黄球的概率为法二:第一步从袋中摸出一个黄球的概率为,当第一步摸出了黄球时,剩下的两个球为1个白球,

28、1个黄球,所以此时第二步再从剩下的两个球中摸出一个黄球的概率为即在第一步的概率中,第二步又有的概率,所以两次都是黄球的概率为两步概率的乘积(3)先从中摸出一球,将它放回口袋中后,再摸一次,作为一次实验,此实验分为两步,第一步为:从袋中摸出一球,第二步为将摸出的球放回袋中,使袋中始终保持三个球,再从中摸出一球 法一:因为每次摸球都是从三个球中摸出一个,所以每次摸黄球的概率都为,二次都摸到黄球的概率为法二:每次摸球的结果都是3,对于第一次的每个结果,第二次都有3个结果与之对应,所以两次摸球的结果总数为两次结果的乘积,每次摸黄球的结果数都为2,所以两次都摸到黄球的结果数为,概率为法三:列表格法四:画

29、树状图小结:由(1)、(2)比较可以看出,无放回地两次都摸黄球的概率与一次性地摸两个黄球的概率是一样的求概率的方法有多种,其中树状图和表格的方法,思路清晰,各种情况一目了然,但相对来说较麻烦,而(3)中的法一、法二相对较简单,归纳如下:如果一次实验分两步进行,第一步的等可能结果数为m,第二步的等可能结果数为n,则总等可能结果数为各步结果数的乘积mn第一步事件A的发生的概率为P(A),第二步事件B发生的概率为P(B),则事件A、B同时发生的概率为各步概率乘积P(A)P(B)二、注意找出所有符合要求的情况例2用下图所示的转盘进行配紫色(红色与蓝色配成)游戏:其中A转盘蓝色部分占整个转盘的求游戏者获胜的概率?解析:配成紫色的情况为(红,蓝),(蓝,红),括号里两种颜色分别表示转盘A、B的指针所指的颜色对于情况(红,蓝),转盘A指向红色的概率为,转盘B指向蓝色的概率为,所以情况(红,蓝)的概率为同理情况(蓝,红)的概率为所以配成紫色的概率为本题也可用表格或树状图来解小结:本题中符合要求的情况为两种,这两种情况不可能同时发生,它们的概率之和就是所求概率 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服