ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:104.04KB ,
资源ID:2162971      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2162971.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022版高考数学一轮复习-课后限时集训-25-同角三角函数的基本关系与诱导公式.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022版高考数学一轮复习-课后限时集训-25-同角三角函数的基本关系与诱导公式.doc

1、2022版高考数学一轮复习 课后限时集训 25 同角三角函数的基本关系与诱导公式2022版高考数学一轮复习 课后限时集训 25 同角三角函数的基本关系与诱导公式年级:姓名:课后限时集训(二十五)同角三角函数的基本关系与诱导公式建议用时:40分钟一、选择题1(多选)(2020潍坊月考)下列化简正确的是()Atan(1)tan 1Bcos Ctan D1AB由诱导公式可得tan(1)tan 1,故A正确;cos ,故B正确;tan ,故C不正确;1,故D不正确故选AB.2cos,则sin等于()AB CDAsinsincos.3(多选)定义:角与都是任意角,若满足,则称与“广义互余”已知sin()

2、,下列角中,可能与角“广义互余”的是()Asin Bcos()Ctan Dtan ACsin()sin ,sin ,若,则.A中,sin sincos ,故A符合条件;B中,cos()cossin ,故B不符合条件;C中,tan ,即sin cos ,又sin2cos21,故sin ,故C符合条件;D中,tan ,即sin cos ,又sin2cos21,故sin ,故D不符合条件故选AC.4若tan ,则sin4cos4的值为()AB CDDtan ,sin4cos4(sin2cos2)(sin2cos2),故选D.5(2020湖南雅礼中学模拟)若sin cos 1(0),则3sin cos

3、 ()A0B1 C1D3Dsin cos 1,(sin cos )212sin cos 1,2sin cos 0.0,cos 0,sin 1,3sin cos 3,故选D.6(2020九江二模)已知2,则tan ()AB CD2A由2得sin 22cos ,两边平方得sin248cos 4cos2,即1cos248cos 4cos2,整理得5cos28cos 30,解得cos 或cos 1(舍去),sin 22,tan ,故选A.二、填空题7在ABC中,若tan A,则sin A_.因为tan A0,所以A为锐角,由tan A以及sin2Acos2A1,可求得sin A.8已知角终边上一点P(

4、4,3),则的值为_原式tan ,根据三角函数的定义得tan .9若f(x)sin1,且f(2 020)2,则f(2 021)_.1由题意知,f(2 020)sin(1 010)1sin 12,sin 1,sin2cos21,cos 0,f(2 021)sin1sin1cos 11.三、解答题10已知sin(3)2sin,求下列各式的值:(1);(2)sin2sin 2.解由已知得sin 2cos .(1)原式.(2)原式.11已知为第三象限角,f().(1)化简f();(2)若cos,求f()的值解(1)f()cos .(2)因为cos,所以sin ,从而sin .又为第三象限角,所以cos

5、 ,所以f()cos .1已知sin ,cos ,若是第二象限角,则tan 的值为()AB2 CDC由sin2cos21得221,整理得a24a0,解得a0或a4.又是第二象限角,a4.sin ,cos ,tan ,故选C.2若,则sin cos ()ABC或1D或1A由得sin cos sin cos .两边平方得12sin cos 3sin2cos2,解得sin cos 或sin cos 1,由题意知1sin 1,1cos 1,且sin 0,cos 0,所以sin cos 1,故选A.3已知关于x的方程2x2(1)xm0的两根为sin 和cos ,且(0,2)(1)求的值;(2)求m的值;

6、(3)求方程的两根及此时的值解(1)由根与系数的关系可知而sin cos .(2)由两边平方,得12sin cos ,将代入,得m.(3)当m时,原方程变为2x2(1)x0,解得x1,x2,则或(0,2),或.1.如图,角和角的终边垂直,且角与单位圆的交点坐标为P,则sin ()ABCDB由任意角的三角函数的定义可知cos ,所以sin sincos ,故选B.2是否存在,(0,),使等式sin(3)cos,cos()cos()同时成立?若存在,求出,的值;若不存在,请说明理由解假设存在角,满足条件由已知条件可得由22,得sin23cos22.sin2,sin .,.当时,由式知cos ,又(0,),此时式成立;当时,由式知cos ,又(0,),此时式不成立,故舍去存在,满足条件

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服