1、数控机床加工工艺毕业论文数控机床加工工艺毕业论文题 目: 数控车削加工工艺和程序编制 系 别: 机械工程系 专 业: 数控技术 内容摘要:数控技术及数控机床在当今机械制造业中的重要地位和巨大效益,显示了其在国家基础工业现代化中的战略性作用,并已成为传统机械制造工业提升改造和实现自动化、柔性化、集成化生产的重要手段和标志。数控技术及数控机床的广泛应用,给机械制造业的产业结构、产品种类和档次以及生产方式带来了革命性的变化。数控机床是现代加工车间最重要的装备。它的发展是信息技术(1T)与制造技术(MT)结合发展的结果。现代的CAD/CAM,FMS,CIMS,敏捷制造和智能制造技术,都是建立在数控技术
2、之上的。数控机床是装备制造业的工作母机,是实现制造技术和装备现代化的基石是保证高新技术产业发展和国防军工现代化的战略装备。在全球倡导绿色制造的大环境下,机床数控化改造成为了热点。它包括普通机床的数控化改造和数控机床的升级。本次设计内容介绍了数控加工的特点、加工工艺分析以及数控编程的一般步骤。并通过一定的实例详细的介绍了数控加工工艺的分析方法。 关键词:数控机床; 加工工艺; 编程目 录内容摘要.绪论.1第一章:零件结构工艺分析、毛胚及加工定位基准的确定.21.1:零件图分析.21.2:工件的加工工艺分析.31.3:工件毛坯的确定31.4:定位基准的选择3第二章:拟定加工工艺路线、制定工序卡片.
3、42.1:工序的划分52.2:加工顺序的安排52.3:控机床加工工序和加工路线的设计52.4:刀具的选择.52.5:确定切削用量.6第三章:确定加工余量、工序尺寸和公差以及工艺尺寸链计算.73.1:加工余量的确定73.2:确定工序尺寸及其公差8第四章:数控编程104.1:数控车床的编程特点.104.2:数控车床的编程指令114.3:加工路线的确定134.4:零件及加工程序编制16结论.22后记.23参考文献.24数控机床加工工艺毕业论文绪论数控技术是用数字或数字信号构成的程序对设备的工作过程实现自动控制的一门技术,简称数控(Numerical Control即NC)。数控技术综合运用了微电子、
4、计算机、自动控制、精密检测、机械设计和机械制造等技术的最新成果,通过程序来实现设备运动过程和先后顺序的自动控制,位移和相对坐标的自动控制,速度、转速及各种辅助功能的自动控制。数控技术是当今世界制造业中的先进技术之一,它涉及到计算机辅助设计和制造技术,计算机模拟及仿真加工技术,机床仿真及后置处理,机械加工工艺,装夹定位技术与夹具设计与制造技术,金属切削理论,以及毛坯制造技术等多方面的关键技术。数控技术的发展具有良好的社会和经济效益,对国家整个制造业的技术进步,提高制造业的市场竞争力有着重要的意义。装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术
5、产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在“高精尖”数控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心
6、的先进制造技术已成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。 数控车削加工工艺及加工程序编制第一章:零件结构工艺分析、毛胚及加工定位基准的确定1.1:零件图分析在设计零件的加工工艺规程时,首先要对加工对象进行深入分析。对于数控车削加工应考虑以下几方面:1、构成零件轮廓的几何条件在车削加工中手工编程时,要计算每个节点坐标;在自动编程时,要对构成零件轮廓所有几何元素进行定义。因此在分析零件图时应注意:(1)零件图上是否漏掉某尺寸,使其几何条件不充分,影响到零件轮廓的构成;(2)零件图上的图线位置是否模糊或尺寸标注不清,使编程无法下手;(3)零件图上给定的几何条件是否不合理,造
7、成数学处理困难。(4)零件图上尺寸标注方法应适应数控车床加工的特点,应以同一基准标注尺寸或直接给出坐标尺寸。2、尺寸精度要求分析零件图样尺寸精度的要求,以判断能否利用车削工艺达到,并确定控制尺寸精度的工艺方法。在该项分析过程中,还可以同时进行一些尺寸的换算,如增量尺寸与绝对尺寸及尺寸链计算等。在利用数控车床车削零件时,常常对零件要求的尺寸取最大和最小极限尺寸的平均值作为编程的尺寸依据。3、形状和位置精度的要求零件图样上给定的形状和位置公差是保证零件精度的重要依据。加工时,要按照其要求确定零件的定位基准和测量基准,还可以根据数控车床的特殊需要进行一些技术性处理,以便有效的控制零件的形状和位置精度
8、。4、表面粗糙度要求表面粗糙度是保证零件表面微观精度的重要要求,也是合理选择数控车床、刀具及确定切削用量的依据。1.2:工件的加工工艺分析断屑处理可采用改变刀具切削部分的几何角度、增加断屑器和通过编程技巧以满足加工中的断屑要求。(1)连续进行间隔式暂停对连续运动轨迹进行分段加工,每相邻加工工段中间用G04指令功能将其隔开并设定较短的间隔时间(0.5s)。其分段多少,视断屑要求而定。(2)进、退刀交换安排在钻削深孔等加工中,可通过工序使钻头钻入材料内一段并经短暂延时后,快速退出配件后在钻入一段,并依次循环,以满足断屑、排泄的要求。(3)进给方向的特殊安排Z轴方向的进给运动在沿负轴方向走刀时,有时
9、并不合理,甚至车坏工件。1.3:工件毛坯的确定1、零件材料及其力学性能零件的材料及其力学性能大致确定了毛坯的种类。例如钢质零件若力学性能要求不太高且形状不十分复杂时可选择型材毛坯,但若要求较高的力学性能,则应选择锻件毛坯。2、零件的结构形状与外形尺寸如形状复杂的大型零件毛坯可采用砂型铸造;一般用途的阶梯轴,若各台阶直径相差不大可用圆棒料,反之,则选择锻件毛坯较为合适;对于锻件毛坯尺寸大的零件一般选择自由锻造,中小型零件可选择模锻。1.4:定位基准的选择定位基准包括粗基准和精基准。粗基准:用未加工过的毛坯表面做基准。精基准:用已加工过的表面做基准。1、粗基准的选择原则:粗基准影响:位置精度、各加
10、工表面的余量大小(均匀、足够)。重点考虑:如何保证各加工表面有足够余量,使不加工表面和加工表面间的尺寸、位置符合零件图要求。(1)合理分配加工余量的原则a、应保证各加工表面都有足够的加工余量:如外圆加工以轴线为基准;b、以加工余量小而均匀的重要表面为粗基准,以保证该表面加工余量分布均匀、表面质量高;如床身加工,先加工床腿再加工导轨面;(2)保证零件加工表面相对于不加工表面具有一定位置精度的原则一般应以非加工面做为粗基准,这样可以保证不加工表面相对于加工表面具有较为精确的相对位置。当零件上有几个不加工表面时,应选择与加工面相对位置精度要求较高的不加工表面作粗基准。2、精基准的选择原则:(1)基准
11、重合的原则:定为基准与设计基准重合(2)基准统一原则:尽量选用一组精基准定位,以此加工工件的大多数表面的工艺原则!(3)互为基准原则当某些表面位置精度要求很高时,采用互为基准反复加工的一种原则(4)自为基准原则当加工面的表面质量要求很高时,为保证加工面有很小的且均匀的余量,常用加工面本身作为基准进行加工的一种工艺原则!(5)便于装夹的原则第二章:拟定加工工艺路线、制定工序卡片2.1:工序的划分数控机床与普通机床加工相比较,加工工序更加集中,根据数控机床的加工特点,加工工序的划分有以下几种方式:(1)根据装夹定位划分工序这种方法一般适应于加工内容不多的工件,主要是将加工部位分为几个部分,每道工序
12、加工其中一部分。如加工外形时,以内腔夹紧;加工内腔时,以外形夹紧。(2)按所用刀具划分工序为了减少换刀次数和空程时间,可以采用刀具集中的原则划分工序,在一次装夹中用一把刀完成可以加工的全部加工部位,然后再换第二把刀,加工其他部位。在专用数控机床或加工中心上大多采用这种方法。(3)以粗、精加工划分工序对易产生加工变形的零件,考虑到工件的加工精度,变形等因素,可按粗、精加工分开的原则来划分工序,即先粗后精。在工序的划分中,要根据工件的结构要求、工件的安装方式、工件的加工工艺性、数控机床的性能以及工厂生产组织与治理等因素灵活把握,力求合理。2.2:加工顺序的安排加工顺序的安排应根据工件的结构和毛坯状
13、况,选择工件定位和安装方式,重点保证工件的刚度不被破坏,尽量减少变形,因此加工顺序的安排应遵循以下原则:(1)上道工序的加工不能影响下道工序的定位与夹紧(2)先加工工件的内腔后加工工件的外轮廓(3)尽量减少重复定位与换刀次数(4)在一次安装加工多道工序中,先安排对工件刚性破坏较小的工序。2.3:控机床加工工序和加工路线的设计数控机床加工工序设计的主要任务:确定工序的具体加工内容、切削用量、工艺装备、定位安装方式及刀具运动轨迹,为编制程序作好预备。其中加工路线的设定是很重要的环节,加工路线是刀具在切削加工过程中刀位点相对于工件的运动轨迹,它不仅包括加工工序的内容,也反映加工顺序的安排,因而加工路
14、线是编写加工程序的重要依据。确定加工路线的原则加工路线应保证被加工工件的精度和表面粗糙度。设计加工路线要减少空行程时间,提高加工效率。简化数值计算和减少程序段,降低编程工作量。据工件的外形、刚度、加工余量、机床系统的刚度等情况,确定循环加工次数。合理设计刀具的切入与切出的方向。采用单向趋近定位方法,避免传动系统反向间隙而产生的定位误差。2.4:刀具的选择刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材科的性能、加工工序切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便、刚性好、耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高
15、刀具加工的刚性。(1)选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀,加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。(2)在进行自由曲面(模具)加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般采用顶端密距,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选
16、择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。(3)在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和按刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整范围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄(3种规格)和锥柄(4种规格)2种,共包括16种不同用途的刀柄。(4)在经济型数控机床
17、的加工过程中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则:尽量减少刀具数量;一把刀具装夹后,应完成其所能进行的所有加工步骤;粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具;先铣后钻;先进行曲面精加工,后进行二维轮廓精加工;在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。2.5确定切削用量1、确定主轴转速主轴转速应根据允许的切削速度和工件(或刀具)直径来选择。其计算公式为:n=1000v/71D式中:v切削速度,单位为m/m动,由刀具的耐用度决定;N主轴转速,单位为r/min, D工件直径或刀具直径
18、,单位为mm。计算的主轴转速n,最后要选取机床有的或较接近的转速。2、确定进给速度进给速度是数控机床切削用量中的重要参数,主要根据零件的加工精度和表面粗糙度要求以及刀具、工件的材料性质选取。最大进给速度受机床刚度和进给系统的性能限制。确定进给速度的原则:当工件的质量要求能够得到保证时,为提高生产效率,可选择较高的进给速度。一般在100一200mm/min范围内选取;在切断、加工深孔或用高速钢刀具加工时,宜选择较低的进给速度,一般在20一50mm/min范围内选取;当加工精度,表面粗糙度要求高时,进给速度应选小些,一般在20-50mm/min范围内选取;刀具空行程时,特别是远距离“回零”时,可以
19、设定该机床数控系统设定的最高进给速度。3、确定背吃刀量背吃刀量根据机床、工件和刀具的刚度来决定,在刚度允许的条件下,应尽可能使背吃刀量等于工件的加工余量,这样可以减少走刀次数,提高生产效率。为了保证加工表面质量,可留少量精加工余量,一般0.20.5mm,总之,切削用量的具体数值应根据机床性能、相关的手册并结合实际经验用类比方法确定。同时,使主轴转速、切削深度及进给速度三者能相互适应,以形成最佳切削用量。切削用量不仅是在机床调整前必须确定的重要参数,而且其数值合理与否对加工质量、加工效率、生产成本等有着非常重要的影响。所谓“合理的”切削用量是指充分利用刀具切削性能和机床动力性能(功率、扭矩),在
20、保证质量的前提下,获得高的生产率和低的加工成本的切削用量。第三章:确定加工余量、工序尺寸和公差以及工艺尺寸链计算3.1:加工余量的确定确定加工余量的方法有3种:分析计算法、经验估算法和查表修正法。(1)分析计算法本方法是根据有关加工余量计算公式和一定的试验资料,对影响加工余量的各项因素进行分析和综合计算来确定加工余量。用这种方法确定加工余量比较经济合理,但必须有比较全面和可靠的试验资料。目前,只在材料十分贵重,以及军工生产或少数大量生产的工厂中采用。(2)经验估算法本方法是根据工厂的生产技术水平,依靠实际经验确定加工余量。为防止因余量过小而产生废品,经验估计的数值总是偏大,这种方法常用于单件小
21、批量生产。(3)查表修正法 此法是根据各工厂长期的生产实践与试验研究所积累的有关加工余量数据,制成各种表格并汇编成手册,确定加工余量时,查阅有关手册,再结合本厂的实际情况进行适当修正后确定,目前此法应用较为普遍。3.2:确定工序尺寸及其公差机械加工过程中,工件的尺寸在不断地变化,由毛坯尺寸到工序尺寸,最后达到设计要求的尺寸。在这个变化过程中,加工表面本身的尺寸及各表面之间的尺寸都在不断地变化,这种变化无论是在一个工序内部,还是在各个工序之间都有一定的内在联系。应用尺寸链理论去揭示它们之间的内在关系,掌握它们的变化规律是合理确定工序尺寸及其公差和计算各种工艺尺寸的基础,尺寸链的计算方法有两种:极
22、值法与概率法。极值法是从最坏情况出发来考虑问题的,即当所有增环都为最大极限尺寸而减环恰好都为最小极限尺寸,或所有增环都为最小极限尺寸而减环恰好都为最大极限尺寸,来计算封闭环的极限尺寸和公差。事实上,一批零件的实际尺寸是在公差带范围内变化的。在尺寸链中,所有增环不一定同时出现最大或最小极限尺寸,即使出现,此时所有减环也不一定同时出现最小或最大极限尺寸。概率法解尺寸链,主要用于装配尺寸链。1、极值法解工艺尺寸链的基本计算公式。尺寸链的计算方法有两种:极值法与概率法。极值法是从最坏情况出发来考虑问题的,即当所有增环都为最大极限尺寸而减环恰好都为最小极限尺寸,或所有增环都为最小极限尺寸而减环恰好都为最
23、大极限尺寸,来计算封闭环的极限尺寸和公差。事实上,一批零件的实际尺寸是在公差带范围内变化的。在尺寸链中,所有增环不一定同时出现最大或最小极限尺寸,即使出现,此时所有减环也不一定同时出现最小或最大极限尺寸。概率法解尺寸链,主要用于装配尺寸链,其计算方法在装配中讲授。这里只介绍极值法解工艺尺寸链的基本计算公式。(1)封闭环的基本尺寸式中K为增环的环数,m为组成环的环数(下同)。(2)封闭环的极限尺寸= = (3)封闭环的极限偏差ES (4)封闭环的公差TTESEI (5)封闭环的平均尺寸L L = 式中增环的平均尺寸减环的平均尺寸。 组成环的平均尺寸 2、工序尺寸及其公差的确定 (1)基准重合时工
24、序尺寸及公差的确定当零件定位基准与设计基准(工序基准)重合时,零件工序尺寸及其公差的确定方法是:先根据零件的具体要求确定其加工工艺路线,再通过查表确定各道工序的加工余量及其公差,然后计算出各工序尺寸及公差;计算顺序是:先确定各工序余量的基本尺寸,再由后往前逐个工序推算,即由工件上的设计尺寸开始,由最后一道工序向前工序推算直到毛坯尺寸。(2)测量基准与设计基准不重合时工序尺寸及其公差的计算在加工中,有时会遇到某些加工表面的设计尺寸不便测量,甚至无法测量的情况,为此需要在工件上另选一个容易测量的测量基准,通过对该测量尺寸的控制来间接保证原设计尺寸的精度。这就产生了测量基准与设计基准不重合时,测量尺
25、寸及公差的计算问题。(3)定位基准与设计基准不重合时工序尺寸计算在零件加工过程中有时为方便定位或加工,选用不是设计基准的几何要素作定位基准,在这种定位基准与设计基准不重合的情况下,需要通过尺寸换算,改注有关工序尺寸及公差,并按换算后的工序尺寸及公差加工。以保证零件的原设计要求。(4)中间工序的工序尺寸及其公差的求解计算在工件加工过程中,有时一个基面的加工会同时影响两个设计尺寸的数值。这时,需要直接保证其中公差要求较严的一个设计尺寸,而另一设计尺寸需由该工序前面的某一中间工序的合理工序尺寸间接保证。为此,需要对中间工序尺寸进行计算。 (5)保证应有渗碳或渗氮层深度时工艺尺寸及其公差的计算a)渗碳
26、 b)磨外圆 c)尺寸链 零件渗碳或渗氮后,表面一般要经磨削保证尺寸精度,同时要求磨后保留有规定的渗层深度。这就要求进行渗碳或渗氮热处理时按一定渗层深度及公差进行(用控制热处理时间保证),并对这一合理渗层深度及公差进行计算。第四章:数控编程4.1:数控车床的编程特点数控车床是目前使用最广泛的数控机床之一。数控车床主要用于加工轴类、盘类等回转体零件。通过数控加工程序的运行,可自动完成内外圆柱面、圆锥面、成形表面、螺纹和端面等工序的切削加工,并能进行车槽、钻孔、扩孔、铰孔等工作。车削中心可在一次装夹中完成更多的加工工序,提高加工精度和生产效率,特别适合于复杂形状回转类零件的加工。 由于这些零件的径
27、向尺寸,无论是测量尺寸还是图纸尺寸,都是以直径值来表示的,所以数控车床采用直径编程方式,即规定用绝对值编程时,X为直径值;用相对值编程时,则以刀具径向实际位移量的二倍值为编程值。对于不同的数控车床、不同的数控系统,其编程基本上是相同的,个别有差异的地方,要参照具体机床的用户手册或编程手册。 下面为一数控车床照片:数控车床是目前使用最广泛的数控机床之一。数控车床主要用于加工轴类、盘类等回转体零件。通过数控加工程序的运行,可自动完成内外圆柱面、圆锥面、成形表面、螺纹和端面等工序的切削加工,并能进行车槽、钻孔、扩孔、铰孔等工作。车削中心可在一次装夹中完成更多的加工工序,提高加工精度和生产效率,特别适
28、合于复杂形状回转类零件的加工。 由于这些零件的径向尺寸,无论是测量尺寸还是图纸尺寸,都是以直径值来表示的,所以数控车床采用直径编程方式,即规定用绝对值编程时,X为直径值;用相对值编程时,则以刀具径向实际位移量的二倍值为编程值。对于不同的数控车床、不同的数控系统,其编程基本上是相同的,个别有差异的地方,要参照具体机床的用户手册或编程手册。图4-1为一数控车床照片图4-14.2:数控车床的编程指令G00 快速移动G01 直线插补G02 顺时针圆弧插补G03 逆时针圆弧插补G04 暂停,精确停止G17 选择XY平面G18 选择ZX平面G19 选择YZ平面G20 英制G21 公制G28 返回参考点G4
29、0 取消刀具半径补偿G41 刀具半径左补偿G42 刀具半径右补偿G43 刀具长度正向补偿G44 刀具长度负向补偿G49 取消刀具长度补偿G54-G59 工件坐标系G73 深孔转削固定循环G74 反螺纹攻丝固定循环G76 精镗固定循环G80 取消固定循环G81 钻削固定循环G82 钻削固定循环G83 深孔钻削固定循环G84 攻丝固定循环G85 镗削固定循环G86 镗削固定循环G87 反镗固定循环G88 镗削固定循环G89 镗削固定循环G90 绝对指令编程G91 增量指令编程G98 固定循环返回初始点G99 固定循环返回R点M00 程序停止M01 有条件停止M02 程序结束M03 主轴正转M04
30、主轴反转M05 主轴停止M06 换刀M08 冷却液开M09 冷却液关M30 程序结束并返回程序头M98 调用子程序M99 子程序结束返回重复执行4.3:加工路线的确定加工路线的确定首先必须保持被加工零件的尺寸精度和表面质量,其次考虑数值计算简单、走刀路线尽量短、效率较高等。因精加工的进给路线基本上都是沿其零件轮廓顺序进行的,因此确定进给路线的工作重点是确定粗加工及空行程的进给路线。下面将具体分析:(1)加工路线与加工余量的关系在数控车床还未达到普及使用的条件下,一般应把毛坯件上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上加工。如必须用数控车床加工时,则要注意程序的灵活安排。安排一些
31、子程序对余量过多的部位先作一定的切削加工。对大余量毛坯进行阶梯切削时的加工路线图4-2所示为车削大余量工件的两种加工路线,图(a)是错误的阶梯切削路线,图(b)按15的顺序切削,每次切削所留余量相等,是正确的阶梯切削路线。因为在同样背吃刀量的条件下,按图(a)方式加工所剩的余量过多。图4-2根据数控加工的特点,还可以放弃常用的阶梯车削法,改用依次从轴向和径向进刀、顺工件毛坯轮廓走刀的路线(如图4-3所示)图4-3分层切削时刀具的终止位置当某表面的余量较多需分层多次走刀切削时,从第二刀开始就要注意防止走刀到终点时切削深度的猛增。如图4-4所示,设以90主偏角刀分层车削外圆,合理的安排应是每一刀的
32、切削终点依次提前一小段距离e(例如可取e=0.05)。如果e=0,则每一刀都终止在同一轴向位置上,主切削刃就可能受到瞬时的重负荷冲击。当刀具的主偏角大于90,但仍然接近90时,也宜作出层层递退的安排,经验表明,这对延长粗加工刀具的寿命是有利的。图4-4(2)刀具的切入、切出在数控机床上进行加工时,要安排好刀具的切入、切出路线,尽量使刀具沿轮廓的切线方向切入、切出。尤其是车螺纹时,必须设置升速段1和降速段2(如图4-5),这样可避免因车刀升降而影响螺距的稳定。图4-5(3)确定最短的空行程路线确定最短的走刀路线,除了依靠大量的实践经验外,还应善于分析,必要时辅以一些简单计算。现将实践中的部分设计
33、方法或思路介绍如下。巧用对刀点 图4-6(a)为采用矩形循环方式进行粗车的一般情况示例。其起刀点A的设定是考虑到精车等加工过程中需方便地换刀,故设置在离坯料较远的位置处,同时将起刀点与其对刀点重合在一起,按三刀粗车的走刀路线安排如下: 第一刀为 ABCDA 第二刀为 AEFGA 第三刀为 AHIJA 图4-6(b)则是巧将起刀点与对刀点分离,并设于图示B点位置,仍按相同的切削用量进行三刀粗车,其走刀路线安排如下:起刀点与对刀点分离的空行程为AB 第一刀为 BCDEB 第二刀为 BFGHB 第三刀为 BIJKB 显然,图4-6(b)所示的走刀路线短。图4-6巧设换刀点为了考虑换(转)刀的方便和安
34、全,有时将换(转)刀点也设置在离坯件较远的位置处(如图4-6中A点),那么,当换第二把刀后,进行精车时的空行程路线必然也较长;如果将第二把刀的换刀点也设置在图4-6(b)中的B点位置上,则可缩短空行程距离。合理安排“回零”路线 在手工编制较复杂轮廓的加工程序时,为使其计算过程尽量简化,既不易出错,又便于校核,编程者(特别是初学者)有时将每一刀加工完后的刀具终点通过执行“回零”(即返回对刀点)指令,使其全都返回到对刀点位置,然后再进行后续程序。这样会增加走刀路线的距离,从而大大降低生产效率。因此,在合理安排“回零”路线时,应使其前一刀终点与后一刀起点间的距离尽量减短,或者为零,即可满足走刀路线为
35、最短的要求。(4)确定最短的切削进给路线 切削进给路线短,可有效地提高生产效率,降低刀具损耗等。在安排粗加工或半精加工的切削进给路线时,应同时兼顾到被加工零件的刚性及加工的工艺性等要求,不要顾此失彼。图4-7为粗车工件时几种不同切削进给路线的安排示例。其中,图4-7(a)表示利用数控系统具有的封闭式复合循环功能而控制车刀沿着工件轮廓进行走刀的路线;图4-7(b)为利用其程序循环功能安排的“三角形”走刀路线;图4-7(c)为利用其矩形循环功能而安排的“矩形”走刀路线。图4-7对以上三种切削进给路线,经分析和判断后可知矩形循环进给路线的走刀长度总和为最短。因此,在同等条件下,其切削所需时间(不含空
36、行程)为最短,刀具的损耗小。另外,矩形循环加工的程序段格式较简单,所以这种进给路线的安排,在制定加工方案时应用较多。4.4:零件及加工程序编制1、机床和毛坯的选择这对配合件是典型的轴类零件,主要加工有内外圆柱面、外圆柱面、内而外螺纹、半椭圆面和圆弧面的加工,故选择卧式高效数控车床即可完成所有加工面的加工要求。具体说,加工零件有粗精车外形、车槽、车螺纹、镗内孔、车内槽、车内螺纹等工序。所需刀具不超过八把。故选择国产CKG6132型卧式数控车床即可满足上述要求。该机床规格为直径460*500mm,X轴行程为225mm,Z轴行程为600mm,尾座体行程380mm,摧力为9000N,主轴转速范围为30
37、4000r/min。X/Z定位精度和重复定位精度分别为0.005mm和0.003mm。刀架容量是4把。数控系统为FANUC 0i。工件在依次装夹中即可完成外圆、车槽、车螺纹、镗孔等工步的加工。毛坯零件尺寸为直径35mm*100mm, 内孔毛坯零件直径26mm*40mm.图4-8示例图4-8表4-1 刀具切削参数表刀具号加工内容刀具规格主轴转速进给速度类型材料T0101粗加工外轮廓菱形刀片硬质合金800150mm/minT0202精加工轮外廓120080mm/minT0303粗镗内轮廓内孔镗刀800100mm/minT0404精镗内轮廓100080mm/minT0505车内槽内车槽刀硬质合金40
38、025mm/minT0606M24*1.5内螺纹60内螺纹车刀6001.5mm/min表4-2 零件的工艺路线序号工序内容1用1号刀进行G71毛坯固定循环,粗加工零件右端外轮廓2用1号刀进行G70固定循环,精加工零件右端外轮廓3掉头夹毛坯,用1号刀进行G71粗加工零件左端外轮廓4用1号刀进行G70精加工件左端外形至最终尺寸5暂停,用直径16的麻花钻钻一个直径24mm*38mm的盲孔6用2号刀G71毛坯固定循环,粗加工件左端内孔7用2号刀G70固定循环,精加工左端内孔至尺寸8用2号刀车直径21mm*4mm的内槽9用3号刀G76螺纹复合循环加工,M20*1.5内螺纹A( X0,Z0 )B( X24
39、,Z-46 )图4-9右端各基点的坐标值C( X26,Z0)D( X30,Z-1.5)E( X30,Z-20.5)图4-10左端各基点的坐标值a( X24,Z-1)e( X21,Z-20)b( X24,Z-6)f( X21,Z-24)c( X20,Z-7)g( X16,Z-24)d( X18,Z-7)h( X16,Z-30)图4-11左端各基点的坐标值2、手工编程程序(采用FANUC 0i系统编程)表4-3程序表单O0001加工零件右端外轮廓主程序名N10T0101换1号刀N20G90G00X100Z100定位换刀点N30S800M03主轴转速800r/min,正转N40G00X35Z2循环始
40、点N40G71U1.0R0.5粗车固定循环:U:每次切深单边1mm,R:退刀量单边0.5mmN60G71P70Q80U0.5W0.1F150U:精加工余量双边0.5mm,W:精加工余量0.1mm,F:粗车进给速度150mm/minN70G01X30F80进刀,精车进给量80mm/minN80Z-46刀具直线插补到B点N90G00X100退刀N100Z100会换刀点N110T0202换2号刀N120S1000M03主轴转速1200r/min,正转N130G00X35Z2粗车固定循环起点N140G70P70Q80精加工N150G00X100Z100退刀N160S800M03F150主轴转速800r
41、/min,正转,进给速度150mm/minN170G00X32Z2椭圆加工起点N180#150=30最大切削余量30mmN190IF#150LT1GOTO220毛坯余量小于1,则跳转到N220N200M98P0002调用椭圆子程序N210#150=#150-2背吃到量N220GOTO190调制到190N230G00X35Z2退刀N240S1200M03F80主轴转速1200r/min,正转,进给速度80mm/minN250#150=0毛坯余量为0N260M98P0002调用子程序精加工N270GX100Z100会换刀点N280M05主轴停转N290M30程序结束O0002椭圆加工子程序名N10
42、#101=30长半轴N20#102=15短半轴N30#103=30起点至椭圆圆心的尺寸N40IF#103LT0.5GOTO100是否走到Z轴终点,则执行N50程序段N50#104=SOR#101*#101-#103*#103计算公式N60#105=15*#104/30X轴变量N70G01X2*#105+#150Z#103-30椭圆插补N80#103=#103-0.5Z轴步距N90GOTO40跳转刀40N100G00X100Z100退刀N110M99子程序结束O0003加工左端外轮廓主程序名N10T0101换1号刀N20G90G00X100Z100回换刀点N30S800M03主轴转速800r/m
43、in,正转N40G00X35Z2粗车循环始点N50G71U1.0R0.5粗车固定循环:U:每次切深单边1mm,R:退刀量单边0.5mmN60G71P60Q110U0.5W0.1F150U:精加工余量双边0.5mm,W:精加工余量0.1mm,F:粗车进给速度150mm/minN70G01X26F80进刀,精车进给量80mm/minN80Z0C点N90X30Z-1.5D点N100Z-20.5E点N110G03X24Z-34R16走圆弧N120G00X100Z100退刀N130T0202换2号刀N140S1200M03F150主轴转速800r/min,正转,进给速度150mm/minN150G70X35Z2快速进刀N160G70P60Q110精加工N170G00X100Z100会换刀点N180M05M30主轴停转,程序结束O0004左端内孔加工程序N10T0303粗镗孔刀N20G90G00X100Z100会换刀点N30S800M03主轴转速800r/min,正转N40G00X18Z2粗车循环始点N50G71U1.0R0.5粗车固定循环:U:每次切深单边1mm,R:退刀量
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100