ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:88.04KB ,
资源ID:2161571      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2161571.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2021届高考数学二轮复习-专题检测圆锥曲线中的最值、范围、证明问题.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021届高考数学二轮复习-专题检测圆锥曲线中的最值、范围、证明问题.doc

1、2021届高考数学二轮复习 专题检测圆锥曲线中的最值、范围、证明问题 2021届高考数学二轮复习 专题检测圆锥曲线中的最值、范围、证明问题 年级: 姓名: 专题检测(十七) 圆锥曲线中的最值、范围、证明问题 大题专攻强化练 1.(2019·湖南省五市十校联考)已知椭圆C:+=1(a>b>0)的离心率为,右焦点为F,以原点O为圆心,椭圆C的短半轴长为半径的圆与直线x-y+=0相切. (1)求椭圆C的方程; (2)如图,过定点P(2,0)的直线l交椭圆C于A,B两点,连接AF并延长交C于M,求证:∠PFM=∠PFB. 解:(1)依

2、题意可设圆O的方程为x2+y2=b2, ∵圆O与直线x-y+=0相切,∴b==1, ∴a2-c2=1, 又=,∴a=, ∴椭圆C的方程为+y2=1. (2)证明:依题意可知直线l的斜率存在,设l的方程为y=k(x-2). 由得(1+2k2)x2-8k2x+8k2-2=0, ∵l与椭圆有两个交点,∴Δ>0,即2k2-1<0. 设A(x1,y1),B(x2,y2),直线AF,BF的斜率分别为k1,k2, 则x1+x2=,x1x2=. ∵F(1,0),∴k1+k2=+=+=2k-k=2k-k×=2k-k×=2k-k×=0, 即∠PFM=∠PFB. 2.(2019·广东六校第一

3、次联考)已知椭圆D:+=1(a>b>0)的离心率为e=,点(-,1)在椭圆D上. (1)求椭圆D的方程; (2)过椭圆D内一点P(0,t)的直线l的斜率为k,且与椭圆D交于M,N两点,设直线OM,ON(O为坐标原点)的斜率分别为k1,k2,若对任意k,存在实数λ,使得k1+k2=λk,求实数λ的取值范围. 解:(1)椭圆D的离心率e==,∴a=b, 又点(-,1)在椭圆D上,∴+=1,得a=2,b=, ∴椭圆D的方程为+=1. (2)由题意得,直线l的方程为y=kx+t. 由消元可得(2k2+1)x2+4ktx+2t2-4=0. 设M(x1,y1),N(x2,y2), 则x1

4、+x2=,x1x2=, k1+k2=+=+=2k+=2k+t··=. 由k1+k2=λk,得=λk, ∵此等式对任意的k都成立,∴=λ, 即t2=2-. ∵点P(0,t)在椭圆内,∴0≤t2<2, 即0≤2-<2,解得λ≥2. ∴实数λ的取值范围是[2,+∞). 3.已知抛物线C:y2=2px(p>0)的准线l1与x轴交于点M,直线l2:4x-3y+6=0与抛物线C没有公共点,动点P在抛物线C上,点P到l1,l2的距离之和的最小值等于2. (1)求抛物线C的方程; (2)过点M的直线与抛物线C交于两个不同的点A,B,设=λ ,求|AB|的取值范围. 解:(1)作PG,PH

5、分别垂直于l1,l2,垂足为G,H,设抛物线C的焦点为F,则F. 由抛物线定义知|PG|=|PF|,所以点P到直线l1,l2的距离之和的最小值即为点F到直线l2的距离,故=2,又p>0,所以p=2. 所以抛物线C的方程为y2=4x. (2)由(1)可得点M的坐标为(-1,0),由题意知直线AB的斜率存在且不为0,设直线AB的方程为y=k(x+1). 由消去x,整理得ky2-4y+4k=0, 因为直线AB与抛物线交于两个不同的点,所以Δ=16-16k2>0,所以0

6、以(x1+1,y1)=λ(x2+1,y2),所以y1=λy2,③ 由①②③可得k2=. 所以|AB|= |y1-y2|= = = = , 则|AB|2==-16=-16=-16=-16, 令f(λ)=λ+,≤λ<1,则f(λ)在上单调递减, 因此可得2<λ+≤, 所以0<-16≤, 所以0<|AB|≤, 即|AB|的取值范围为. 4.(2019·重庆七校联考)椭圆C:+=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不经过原点O的直线l与椭圆C相交于A,B两点,且线段AB被直线OP平分. (1)求椭圆C的方程; (2)求△ABP的面积取最大值时,直

7、线l的方程. 解:(1)依题意知,e==, 左焦点(-c,0)到点P(2,1)的距离d0==, 得a2=4,c2=1,所以b2=3, 故椭圆C的方程为+=1. (2)易得直线OP的方程为y=x,设A(x1,y1),B(x2,y2),AB的中点R(x0,y0)(y0≠0),其中y0=x0. 因为A,B在椭圆C上,所以+=1,+=1,两式相减得-+-=0,即+=0, 故kAB==-·=-. 由题意可设直线l的方程为y=-x+m(m≠0),代入+=1中, 消去y并整理得3x2-3mx+m2-3=0, 由Δ=(3m)2-4×3(m2-3)=3(12-m2)>0,得-2

8、0. 由根与系数的关系,得x1+x2=m,x1x2=, 所以|AB|=|x1-x2|=·= . 又点P(2,1)到直线l的距离d==, 所以△ABP的面积S△ABP=·|AB|·d=·,其中-20,当m∈(1-,2)且m≠0时,f′(m)<0, 所以当m=1-时,S△ABP取得最大值,此时直线l的方程为3x+2y+2-2=0.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服